Päťuholník

Vo vnútri pravidelného päťuholníka ABCDE je bod P taký, že trojuholník ABP je rovnostranný. Aký veľký je uhol BCP?
Urob si náčrtok.

Správny výsledok:

x =  66 °

Riešenie:

x=(180(2 5460))/2=66



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 1 komentár:
#
Mo - Ofic
Nápoveda. Uvedomte si, že trojuholník BCP nie je obyčajný.

Možné riešenie. Päťuholník ABCDE je pravidelný, najmä platí | AB | = | BC |. Trojuholník ABP je rovnostranný, najmä platí | AB | = | BP |. Odtiaľ vidíme, že | BP | = | BC |, teda, že trojuholník BCP je rovnoramenný. Jeho vnútorné uhly pri vrcholoch P a C sú preto zhodné; na ich určenie stačí poznať uhol pri vrchole B (súčet veľkostí vnútorných uhlov v ľubovoľnom trojuholníku je 180◦). Pritom uhol P BC je rozdielom uhlov ABC a ABP, z ktorých prvá je vnútorným uhlom pravidelného päťuholníka (vyjadríme vzápätí) a druhý je vnútorným uhlom rovnostranného trojuholníka (má veľkosť α = 60◦).

Päťuholník ABCDE môžeme rozdeliť na päť trojuholníkov so spoločným vrcholom P. Súčet vnútorných uhlov päťuholníka je rovný súčtu vnútorných uhlov všetkých piatich trojuholníkov výnimkou uhlov pri vrchole P, tj. 5 · 180◦-360◦ = 540◦. V pravidelnom päťuholníka sú všetky vnútorné uhly zhodné, každý má teda veľkosť 540◦: 5 = 108◦.

Odtiaľ konečne vieme vyjadriť β = |uhol PBC | = |uhol ABC | - |uhol ABP | = 108◦ - 60◦ = 48◦ a následne γ = |uhol BCP | = |uhol BPC | = (180◦ - 48◦) / 2 = 66◦.

Veľkosť uhla BCP je 66◦.

Poznámka. Veľkosť vnútorného uhla pravidelného päťuholníka je možné odvodiť aj pomocou rozdelenia na päť zhodných rovnoramenných trojuholníkov ako na nasledujúcom obrázku (S je stred päťuholníka, tj. Stred jemu opísanej kružnice).

Uhol pri vrchole S v každom z týchto trojuholníkov má veľkosť 360: 5 = 72◦; súčet uhlov pri základni je rovný 180◦-72◦ = 108◦, čo je tiež veľkosť vnútorného uhla pravidelného päťuholníka.

avatar









Tipy na súvisiace online kalkulačky
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1

Ďaľšie podobné príklady a úlohy:

  • Rovnoramenný lichobežník
    mo-klm Je daný rovnoramenný lichobežník ABCD, v ktorom platí: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: Na jeho strane BC je bod K taký, že |BK| = 2 |KC|, na jeho strane CD je bod L taký, že |CL| = 2 |LD|, a na jeho strane DA je bod M taký, že |DM| = 2 |MA|. Určte veľkos
  • Súčet uhlov
    angle-sum-of-polygon Dokážte, že súčet veľkostí všetkých vnútorných uhlov ľubovoľného konvexného n-uholníka sa rovná (n-2).180 stupňov.
  • Z7-I-5 MO 2017
    triangle_1111_6 Prokop zostrojil trojuholník ABC, ktorého vnútorný uhol pri vrchole A bol väčší ako 60° a vnútorný uhol pri vrchole B bol menší ako 60°. Juraj narysoval v polrovine určenej priamkou AB a bodom C bod D, a to tak, že trojuholník ABD bol rovnostranný. Potom
  • MO Z9 2019 domáce kolo
    triangles V trojuholníku ABC leží bod P v tretine úsečky AB (bližšie bodu A), bod R je v tretine úsečky PB (bližšie bodu P) a bod Q leží na úsečke BC tak, že uhly PCB a RQB sú zhodné. Určte pomer obsahov trojuholníkov ABC a PQC.
  • Katka MO
    reporter_saved6 Katka narysovala trojuholník ABC. Stred strany AB si označila ako X a stred strany AC ako Y. Na strane BC chce nájsť taký bod Z, aby obsah štvoruholníka AXZY bol čo najväčší. Akú časť trojuholníka ABC môže maximálne zaberať štvoruholník AXZY?
  • Rovnoramenný lichobežník 2
    klm Daný je rovnoramenný lichobežník ABCD, v ktorom platí |AB|= 2|BC|= 2|CD|= 2|DA|. Na jeho strane BC je bod K taký, že |BK| = 2|KC|, na jeho strane CD je bod L taký, že |CL|= 2|LD|, a na jeho strane DA je bod M taký, že|DM|= 2|MA|. Určte veľkosti vnútorných
  • Vo štvoruholníku
    circle_inscribed_polygon Vo štvoruholníku ABCD, ktorého vrcholy ležia na danej kružnici, je uhol pri vrchole A rovný 58 stupňov a uhol pri vrchole B 134 stupňov. Vypočítajte veľkosti zvyšných vnútorných uhlov.
  • Z8-I-2 MO 2017
    klm1 V ostrouhlom trojuholníku KLM má uhol KLM veľkosť 68°. Bod V je priesečníkom výšok a P je pätou výšky na stranu LM. Os uhla P V M je rovnobežná so stranou KM. Porovnajte veľkosti uhlov MKL a LMK.
  • Vnútorné uhly 7
    rr_triangle3 Veľkosť vnútorného uhla pri hlavnom vrchole C rovnoramenného trojuholníka ABC je 72°. Priamka p, rovnobežná so základňou tohto trojuholníka, rozdeľuje trojuholník na lichobežník a menší trojuholník. Aké veľké sú vnútorné uhly lichobežníka?
  • MO - trojuholníky
    metal Na stranách AB a AC trojuholníka ABC leží postupne body E a F, na úsečke EF leží bod D. Přmky EF a BC sú rovnobežné a súčasne platí FD:DE = AE:EB = 2:1. Trojuholník ABC má obsah 27 hektárov a úsečkami EF, AD a DB je rozdelený na štyri časti. Určite obsahy
  • Vonkajší uhol
    triangle_1111_3 Vonkajší uhol trojuholnika ABC pri vrchole A je 71°40' vonkajší uhol pri vrchole B je 136° 50'. Akú veľkosť má vnútorný uhol trojuholnika pri vrchole C?
  • Urči uhol,
    clocks2_1 Urči uhol, ktorý zviera veľká ručička s malou ručičkou na hodinách – stredový uhol o 12:30. Urči veľkosť menšieho uhla (ak sa dá). (Pomôcka: stačí ak vypočítaš aký veľký uhol zvierajú ručičky ak sú od seba vzdialené 1 minútu. Kruh má 360°, hodina 60 minút
  • Šesťuholník nepravidelný
    6uholnik_nepravidelny Na obrázku je štvorec ABCD, štvorec EFGD a obdĺžnik HIJD. Body J a G ležia na strane CD, pričom platí |DJ| < |DG| a body H a E ležia na strane DA, pričom platí /DH/ < /DE/. Ďalej vieme, že /DJ/ = /GC/. Šesťuholník ABCGFE má obvod 96 cm, šesťuholník EFG
  • Mo - kružnice
    mo Juro zostrojil štvorec ABCD so stranou 12 cm. Do tohto štvorca narysoval štvrťkružnicu k, ktorá mala stred v bode B a prechádzala bodom A, a polkružnicu l, ktorá mala stred v strede strany BC a prechádzala bodom B. Rád by ešte zostrojil kružnicu, ktorá by
  • Koeficient podobnosti 2
    trig12 Trojuholníky ABC a A"B"C" sú podobné koeficientom podobnosti 2 . Veľkosti uhlov trojuholníka ABC sú α= 35° a β= 48°. urči veľkosti všetkých uhlov trojuholníka A"B"C".
  • Alfa, beta, gama
    angles_in_triangle V trojuholníku ABC je veľkosť vnútorného uhla BETA o 8 stupňov väčšia ako veľkosť vnútorného ALFA uhla a veľkosť vnútorného uhla GAMA je dvakrát väčšia ako veľkosť uhla BETA. Určte veľkosti vnútorných uhlov trojuholníka ABC.
  • Deväťuholník
    9gon_1 Vypočítajte obvod pravidelného deväťuholníka vpísaného do kružnice s polomerom 13 cm.