Päťuholník
Vo vnútri pravidelného päťuholníka ABCDE je bod P taký, že trojuholník ABP je rovnostranný. Aký veľký je uhol BCP?
Urob si náčrtok.
Urob si náčrtok.
Správna odpoveď:
Zobrazujem 1 komentár:
Mo - Ofic
Nápoveda. Uvedomte si, že trojuholník BCP nie je obyčajný.
Možné riešenie. Päťuholník ABCDE je pravidelný, najmä platí | AB | = | BC |. Trojuholník ABP je rovnostranný, najmä platí | AB | = | BP |. Odtiaľ vidíme, že | BP | = | BC |, teda, že trojuholník BCP je rovnoramenný. Jeho vnútorné uhly pri vrcholoch P a C sú preto zhodné; na ich určenie stačí poznať uhol pri vrchole B (súčet veľkostí vnútorných uhlov v ľubovoľnom trojuholníku je 180◦). Pritom uhol P BC je rozdielom uhlov ABC a ABP, z ktorých prvá je vnútorným uhlom pravidelného päťuholníka (vyjadríme vzápätí) a druhý je vnútorným uhlom rovnostranného trojuholníka (má veľkosť α = 60◦).
Päťuholník ABCDE môžeme rozdeliť na päť trojuholníkov so spoločným vrcholom P. Súčet vnútorných uhlov päťuholníka je rovný súčtu vnútorných uhlov všetkých piatich trojuholníkov výnimkou uhlov pri vrchole P, tj. 5 · 180◦-360◦ = 540◦. V pravidelnom päťuholníka sú všetky vnútorné uhly zhodné, každý má teda veľkosť 540◦: 5 = 108◦.
Odtiaľ konečne vieme vyjadriť β = |uhol PBC | = |uhol ABC | - |uhol ABP | = 108◦ - 60◦ = 48◦ a následne γ = |uhol BCP | = |uhol BPC | = (180◦ - 48◦) / 2 = 66◦.
Veľkosť uhla BCP je 66◦.
Poznámka. Veľkosť vnútorného uhla pravidelného päťuholníka je možné odvodiť aj pomocou rozdelenia na päť zhodných rovnoramenných trojuholníkov ako na nasledujúcom obrázku (S je stred päťuholníka, tj. Stred jemu opísanej kružnice).
Uhol pri vrchole S v každom z týchto trojuholníkov má veľkosť 360: 5 = 72◦; súčet uhlov pri základni je rovný 180◦-72◦ = 108◦, čo je tiež veľkosť vnútorného uhla pravidelného päťuholníka.
Možné riešenie. Päťuholník ABCDE je pravidelný, najmä platí | AB | = | BC |. Trojuholník ABP je rovnostranný, najmä platí | AB | = | BP |. Odtiaľ vidíme, že | BP | = | BC |, teda, že trojuholník BCP je rovnoramenný. Jeho vnútorné uhly pri vrcholoch P a C sú preto zhodné; na ich určenie stačí poznať uhol pri vrchole B (súčet veľkostí vnútorných uhlov v ľubovoľnom trojuholníku je 180◦). Pritom uhol P BC je rozdielom uhlov ABC a ABP, z ktorých prvá je vnútorným uhlom pravidelného päťuholníka (vyjadríme vzápätí) a druhý je vnútorným uhlom rovnostranného trojuholníka (má veľkosť α = 60◦).
Päťuholník ABCDE môžeme rozdeliť na päť trojuholníkov so spoločným vrcholom P. Súčet vnútorných uhlov päťuholníka je rovný súčtu vnútorných uhlov všetkých piatich trojuholníkov výnimkou uhlov pri vrchole P, tj. 5 · 180◦-360◦ = 540◦. V pravidelnom päťuholníka sú všetky vnútorné uhly zhodné, každý má teda veľkosť 540◦: 5 = 108◦.
Odtiaľ konečne vieme vyjadriť β = |uhol PBC | = |uhol ABC | - |uhol ABP | = 108◦ - 60◦ = 48◦ a následne γ = |uhol BCP | = |uhol BPC | = (180◦ - 48◦) / 2 = 66◦.
Veľkosť uhla BCP je 66◦.
Poznámka. Veľkosť vnútorného uhla pravidelného päťuholníka je možné odvodiť aj pomocou rozdelenia na päť zhodných rovnoramenných trojuholníkov ako na nasledujúcom obrázku (S je stred päťuholníka, tj. Stred jemu opísanej kružnice).
Uhol pri vrchole S v každom z týchto trojuholníkov má veľkosť 360: 5 = 72◦; súčet uhlov pri základni je rovný 180◦-72◦ = 108◦, čo je tiež veľkosť vnútorného uhla pravidelného päťuholníka.
8 rokov 1 Like
Tipy na súvisiace online kalkulačky
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Jednotky fyzikálnych veličín:
Téma:
Úroveň náročnosti úlohy:
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1
Súvisiace a podobné príklady:
- Špeh a opilec
Po dlhom večeri vo vnútri salónika v tvare štvorca ABCD leží opitý kupec E tak, že trojuholník DEC je rovnostranný. Na hrane BC leží špeh F, pričom |EB|=|EF|. Aká je veľkosť uhla CEF? - Obdĺžnikový 36111
Vypočítaj, ak sa zmestí obdĺžnikový obraz s rozmermi 33cm a 70cm do kufra s rozmermi 65cm, 40cm a 20cm. Urob si náčrtok, zapíš ako slovnú úlohu. - Päťuholník 6
Vývesný štít má tvar päťuholníka ABCDE, v ktorom úsečka BC je kolmá na úsečku AB a EA je kolmá na úsečku AB. Bod P je päta kolmice spustenie z bodu D na úsečku AB. |AP|=|PB|, |BC|=|EA|=6dm, |PD|=8,4dm. Na štíte je vyznačený bod X - priesečník úsečiek PE a - Rovnoramenný lichobežník 2
Daný je rovnoramenný lichobežník ABCD, v ktorom platí |AB|= 2|BC|= 2|CD|= 2|DA|. Na jeho strane BC je bod K taký, že |BK| = 2|KC|, na jeho strane CD je bod L taký, že |CL|= 2|LD|, a na jeho strane DA je bod M taký, že|DM|= 2|MA|. Určte veľkosti vnútorných
- Obdĺžnik vs päťuholník
Obdĺžnik má dĺžky stran |JA|=16cm a |AN|=12cm. Bod S je stred strany JO a bod T je stred strany JA. Vypočítajte obvod päťuholníka v cm. - Päťuholník
Vypočítajte obsah pravidelného päťuholníka, ktorého uhlopriečka je dlhá u=16. - Obsah päťuholníka
Vypočítajte obsah pravidelného päťuholníka so stranou 31 cm.