C – I – 3 MO 2018

Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2.

Dokažte, že platí nerovnost:

a2 + b2 + c2 + 3abc < 9

Správný výsledek:

d =  1

Řešení:

a+b+c=3 0<a<2 0<b<2 0<c<2 (a+b+c)2=a2+b2+c2+2ab+2bc+2ca (a+b+c)2=32=9  a2+b2+c2=92(ab+bc+ac) 92(ab+bc+ac)+3abc<9 2(ab+bc+ac)<3abc  2(ab+bc+ac)>3abc a=b=c=2 x11=2 (2 2+2 2+2 2)=24 x12=3 2 2 2=24 x11=x12  a=b=c=3/2 x21=2 (1.5 1.5+1.5 1.5+1.5 1.5)=13.5 x22=3 1.5 1.5 1.5=10.125 x21>x22   d=1



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 2 komentáře:
#
Dr Math
Návodné a doplňující úlohy:

N1. Pro reálná čísla se součtem 3 platí navíc a2 + b2 + c2 = 5. Jaké hodnoty může nabývat výraz ab+bc+ca? [Jelikož (a+b+c)2 = a2 +b2 +c2 + 2(ab+bc+ca), je nutně ab + bc + ca = 2. Hodnota je dosažitelná díky trojici (2, 1, 0).]

N2. Nezáporná reálná čísla a, b, c jsou všechna nejvýše rovna 1. Dokažte, že 3abc <= a + b + c. Kdy nastane rovnost? [Upravíme na a(1 − bc) + b(1 − ac) + c(1 − ab) >= 0, výrazy v závorkách jsou nezáporné. Rovnost nastane, právě když buď a = b = c = 0, nebo a = b = c = 1.]

D1. Dokažte, že pro reálná čísla a, b, c platí a2 +b2 +c2 >= ab+bc+ca. Kdy nastane rovnost? [Nerovnost je ekvivalentní s (a − b)2 + (b − c)2 + (c − a)2 = 0, která jistě platí. Rovnost nastane jedině v případě a = b = c.]

D2. Reálná čísla a, b, c mají součet 3. Dokažte, že 3 = ab + bc + ca. Kdy nastane rovnost? [Plyne z rovnosti 9 = (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) a z předešlé úlohy. Rovnost nastane jedině v případě a = b = c = 1.]

D3. Dokažte, že pro libovolná reálná čísla x, y, z platí nerovnost x2 + 5y2 + 4z2 = 4y(x + z), a zjistěte, kdy nastane rovnost. [Anulujte pravou stranu dané nerovnosti a upravte ji následně do tvaru (x2 − 4xy + 4y2 ) + (y2 − 4yz + 4z2 ) = 0, kde na levé straně je nezáporný součet (x − 2y)2 + (y − 2z)2 . Rovnost zde nastane, právě když platí (x, y, z) = (4c, 2c, c), kde c je libovolné reálné číslo.]

D4. Nechť a, b, c jsou délky stran trojúhelníku. Dokažte, že platí nerovnost 3a2 + 2bc > 2ab + 2ac. [Danou nerovnost upravte na tvar a 2 −(b−c)2 + (a−b)2 + (a−c)2 > 0 a rozdíl prvních dvou druhých mocnin nahraďte příslušným součinem.]

#
Vítek
Řešení je chybné, součet a + b + c musí být 3.

avatar









Další podobné příklady a úkoly:

  • MO C-I-3 2019
    numbers Určete všechny dvojice přirozených čísel A a B, pro které platí, že součet dvojnásobku nejmenšího společného násobku a trojnásobku největšího společného dělitele přirozených čísel A a B je roven jejich součinu.
  • Výraz
    vyraz Určete hodnotu výrazu pro a = -1, b =2: x=b - 2a - ab y=a3 - b2 - 2ab z=a2 b3 - a3 b2 w=a + b + a3 - b2
  • Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  • MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  • MO Z9 2019 domace kolo
    triangles V trojúhelníku ABC leží bod P ve třetině úsečky AB blíže bodu A, bod R je ve třetině úsečky P B blíže bodu P a bod Q leží na úsečce BC tak, že úhly P CB a RQB jsou shodné. Určete poměr obsahů trojúhelníků ABC a PQC.
  • Cifry A,B,C
    numbers_8 Pro různé cifry A,B,C platí: druhá odmocnina ze BC se rovná A a součet B+C se rovná A. Urči A+2B+3C. BC uvažujte ako dvojciferné číslo, nie jako súčin.
  • C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  • Dva úhly
    rt_1_1 Trojúhelníky ABC a A'B'C 'jsou podobné. V trojúhelníku ABC jsou velikosti dvou úhlů 25° a 65°. Zdůvodnite, proč v trojúhelníku A'B'C 'je součet velikostí dvou c rovný 90°.
  • Mirek a Zuzka
    mo_1 Obdélník je rozdělený na 7 políček. Na každé políčko se má napsat právě jedno z čísel 1, 2 a 3. Mirek tvrdí, že to lze provést tak, aby součet dvou vedle sebe napsaných čísel byl pokaždé jiný. Zuzka naopak tvrdí, že to možné není. Rozhodněte, kdo z nich m
  • Jsou dány
    vectors_sum0 Jsou dány body A(1,2), B(4,-2) a C(3,-2) . Najděte parametrické rovnice přímky, která: a) Prochází bodem C a je rovnoběžná s přímkou AB, b) Prochází bodem C a je kolmá k přímce AB.
  • Směrový vektor
    vectors_3 A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  • Z9-I-6 MO 2017
    olympics_1 Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
  • Hodnota
    expr_1 Určete hodnotu výrazu 3a + 2b - a2 - 4b2 pro hodnoty proměnných : a) a = - 1, b = 3 b) a = 2, b = -1 c) a = -2, b = -3 d) a = 4, b = 2 e) a = -5, b = 0
  • Nádoby
    nadoby Máme nádobu o obsahu 7litru,5litru a 2litry. Největší nádoba je naplněná tekutinou, ostatní jsou prázdné. Dokážeš pouze přeléváním získat 5litru a dvakrát po jednom litru tekutiny? Na kolik přelití to jde?
  • Čtyřciferná čísla
    numberline Najděte čtyřciferná čísla, kde všechny číslice jsou různé. Pro čísla platí, že součet třetí a čtvrté číslice je dvakrát větší než součet prvních dvou čísel a součet první a čtvrté číslice je rovný součtu druhé a třetí číslice. Číslice 0 nesmí byt na první
  • Souřadnice těžiště
    triangle_234 Nechť A = [3, 2, 0], B = [1, -2, 4] a C = [1, 1, 1] jsou 3 body v prostoru. Vypočítejte souřadnice těžiště △ ABC (je to průsečík těžnic).