Betka

Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládalo se pouze z číslic myšleného čísla (avšak nemuselo obsahovat všechny jeho cifry). Erice se Betkino číslo zalíbilo a chtěla najít jiné číslo se stejnými vlastnostmi. Zjistila, že neexistuje menší takové číslo jako Betkino a větší se jí hledat nechtělo. Určete, jaké číslo si myslela Bětka a jaké číslo by mohla najít Erika, kdyby měla více trpělivosti.

Výsledek

b =  1032
e =  2301

Řešení:

Textové řešení b =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

7 komentářů (8 odpovědí celkově):
#1
Peter2
Nápověda. Zvažujte postupně možnosti, kdy je myšlené číslo jednomístné, dvojmístné atd. V jednotlivých případech přemýšlejte postupně nad možnými součty na místě jednotek, desítek atd.

Možné řešení. Nejprve najdeme Bětčino číslo, tj. nejmenší číslo s uvedenými vlastnostmi.
1) Předpokládejme, že Bětčino číslo je jednomístné, a označíme si je a. Potom by podle zadání muselo platit a + a = a, což platí pouze když a = 0. Nula však není přirozené číslo, takže Bětčino myšlené číslo nemůže být jednomístné.
2) Předpokládejme, že Bětčino číslo je dvojmístné, a označíme si je ab. Ať už součet ab + ba dopadne jakkoli, na místě jednotek čteme buď b + a = a, nebo b + a = b. Odtud dostáváme buď b = 0, nebo a = 0. V takovém případě by však buď číslo ba, nebo číslo ab nebylo dvojmístné. Bětčino myšlené číslo tedy nemůže být dvojmístné.
3) Předpokládejme, že Bětčino číslo je trojmístné, a označíme si je abc. Ze stejného důvodu jako výše nemohou být čísla a a c nuly, tedy v součtu abc+cba se na místě jednotek může objevit jedině b:

a b c
c b a
____
∗ ∗ b

Současně c + a nemůže být větší než 9, protože potom by celkový součet abc + cba nebyl trojmístný. Odtud se dozvídáme, že

a + c = b

což mimo jiné znamená, že ani číslice b nemůže být 0. Odtud plyne, že součet b + b na místě desítek nemůže být menší než 10; v takovém případě by tento součet byl roven jednomu z čísel a, b, c, což vždy vede k nějakému sporu s předchozími poznatky:

Pokud b + b = a nebo b + b = c, potom podle (1) dostáváme 2a + 2c = a nebo 2a + 2c = c, tedy a = −2c nebo c = −2a, což není možné.
• Pokud b + b = b, potom b = 0, což není možné.
Součet b + b na místě desítek však nemůže být ani větší než 9. V takovém případě by součet na místě stovek byl a + c + 1 a toto číslo má být rovno jednomu z čísel a, b, c; to vždy vede k nějakému sporu:
• Pokud a + c + 1 = a nebo a + c + 1 = c, potom c = −1 nebo a = −1, což není možné.
• Pokud a+c+ 1 = b, potom podle (1) dostáváme b+ 1 = b, tedy 1 = 0, což není možné.

Bětčino myšlené číslo tedy nemůže být ani trojmístné.

4) Předpokládejme, že Bětčino číslo je čtyřmístné, a označíme si je abcd. Ze stejného důvodu jako výše nemohou být čísla a a d nuly, tedy v součtu abcd + dcba se na místě jednotek může objevit buď b, nebo c:

a b c d
d c b a
----------
∗ ∗ ∗ b

a b c d
d c b a
----------
∗ ∗ ∗ c

Současně d + a nemůže být větší než 9, protože potom by celkový součet abcd + dcba nebyl čtyřmístný. Odtud se dozvídáme, že
buď a + d = b, (dale jen 2)
nebo a + d = c. (dale jen 3)

To mimo jiné znamená, že buď b <> 0, nebo c <> 0.
Nyní předpokládáme, že součet c+b na místě desítek je menší než 10, tzn. tento součet je roven jednomu z čísel a, b, c, d, a prozkoumáme jednotlivé případy. Nejprve uvažujme platnost (2), a tedy b <> 0:

• Pokud b + c = a nebo b + c = d, potom podle (2) dostáváme a + d + c = a nebo a + d + c = d, tedy c = −d nebo c = −a, což není možné.
• Pokud b + c = b, potom c = 0 (což ničemu nevadí).
• Pokud b + c = c, potom b = 0, což není možné.
Podobně, za předpokladu (3) zjistíme, že jediná přípustná možnost je
• b + c = c, tedy b = 0

Celkem tak objevujeme dva možné případy:
a b 0 d
d 0 b a
----------
b b b b

a 0 c d
d c 0 a
----------
c c c c

Protože Bětčino číslo je nejmenší číslo vyhovující všem uvedeným podmínkám, vůbec se nemusíme zabývat případem, kdy součet c + b je větší než 9, a soustředíme se výhradně na druhou z výše jmenovaných možností, tj. b = 0. Dosadíme nejmenší možné číslo na místo tisícovek a = 1 a zjišťujeme, že c = d + 1. Nejmenší vyhovující možnost je d = 2 a c = 3. Bětka si tedy hrála s číslem 1032 a její výpočet vypadal takto:

1 0 3 2
2 3 0 1
----------
3 3 3 3

Z výše uvedeného je nyní snadné doplnit nějaké jiné číslo s uvedenými vlastnostmi, tedy nějaké Eričino číslo. Např. stačí v Bětčině čísle zaměnit číslice na místě jednotek a tisícovek nebo číslice na místě desítek a stovek, příp. uvažovat jakákoli čísla tvaru (4). Mezi možnými řešeními jsou také čísla, kdy součet c+b je větší než 9. Zde je několik řešení, na která mohla Erika přijít, kdyby ovšem nebyla tak netrpělivá:

1 0 4 3
3 4 0 1
----------
4 4 4 4

1 3 0 2
2 0 3 1
----------
3 3 3 3

1 8 9 7
7 9 8 1
----------
9 8 7 8

Poznámky. a) Pokud umíme zdůvodnit, že hledané Bětčino číslo musí být aspoň čtyřmístné, potom je lze snadno najít zkoušením:

Nejmenší čtyřmístné číslo s navzájem různými číslicemi je 1023. Toto číslo však není řešením, neboť 1023 + 3201 = 4224. Pokud nás napadne prohodit číslice 2 a 3, dostaneme vyhovující řešení: 1032 + 2301 = 3333. Abychom se přesvědčili, že toto řešení je nejmenší možné, stačí ověřit, že žádné číslo mezi 1023 a 1032 nevyhovuje některé z uvedených podmínek.
b) Nahrazení ostatních úvah zkoušením je také možné, avšak často velmi pracné. Nicméně pokud je řešení založené na zkoušení úplné, nechť je považováno za správné.
Jakékoli dílčí obecné postřehy mohou počet možností k prozkoušení zajímavě snižovat (např. počet trojic různých čísel od 1 do 9 vyhovujících rovnosti (1) jistě není větší než 32.

3 roky  2 Likes
#2
Žák
A proc neni nejmenším hledaným číslem 1021?

#3
Žák
Pretoze musi mat navzajom rozne cifry :)

#4
Žák
Pretoze musi mat navzajom rozne cifry :)

#5
žák01
Proč to nemůže být například 10?

10 + 01 = 11

To stejné platí pro všechny násobky deseti až do devadesáti.

#1
Protože 01, 02, atd. nejsou čísla.....

#6
Mik
K nápovědě Peter2 - bod 2 dvojmístné číslo, "Předpokládejme, že Bětčino číslo je dvojmístné, a označíme si je ab. Ať už součet ab + ba dopadne jakkoli, na místě jednotek čteme buď b + a = a, nebo b + a = b. Odtud dostáváme buď b = 0, nebo a = 0. V takovém případě by však buď číslo ba, nebo číslo ab nebylo dvojmístné"

To je sice pravda, ale v zadání není napsáno, že zadáním čísel odzadu má vzniknout opět číslo se stejným počtem míst ("Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo")

Řekl bych tedy, že násobky deseti do devadesáti mohou být řešením.

#7
Žák
vysledek muze mit i vice mist treba ....10403 nebo 18971897

avatar









Další podobné příklady:

  1. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  2. MO Z8 – I – 4 2018
    olympics_8 Na čtyřech kartičkách byly čtyři různé číslice, z nichž jedna byla nula. Vojta z kartiček složil co největší čtyřmístné číslo, Martin pak co nejmenší čtyřmístné číslo. Adam zapsal na tabuli rozdíl Vojtova a Martinova čísla. Potom Vojta z kartiček složil
  3. Cifra
    olympics_3 Jaké je poslední číslo 2016-té mocniny čísla 2017?
  4. Tři čísla
    tri_cisla Najdi tři čísla tak, aby druhé číslo bylo 3krát větší než první a třetí bylo o 6 větší než druhé číslo. Jejich součet je 62
  5. Ovoce
    hrusky_jablka V šesti košících má prodavač ovoce. V jednotlivých košících jsou jen jablka nebo jen hrušky s následujícím počtem ovoce: 5,6,12,14,23 a 29.,, Pokud prodám tento košík", přemýšlí prodavač ,,pak mi zůstane právě dvakrát tolik jablek jako hrušek." Na který k
  6. Veselá chodidla
    klokan Na planetě veselá chodidla má každý muž levou nohu o 2 čísla větší než pravou ženy mají levou o 1 číslo větší. Boty se tam prodávají v párech o stejné velikosti. Kamarádi chtěli ušetřit peníze proto si boty koupili společně když si každý vybral pro sebe j
  7. Učebnice matematiky
    encyklopedia K očíslování všech listů učebnice matematiky bylo potřeba celkem 3389 číslic. Předpokládejme, že v knize je očíslován každý list mimo desek. Kolik stran má tato učebnice, jestliže je: a) jednosvazková b) dvousvazková (přičemž oba díly mají zhruba stejný
  8. Číslice sedm
    seven Kolik existuje trojmístných přirozených čísel ve kterých se nevyskytuje číslice 7?
  9. Kuličky
    kulicky Michal řekl Martinovi: dej mi jednu kuličku a já budu mít dvakrát tolik co ty. Martin odpověděl: dej mi ty 7 a budeme mít stejně. Kolik kuliček měl každý?
  10. Myšky - Z9–I–5
    Mysky Myšky si postavily podzemní domeček sestávající z komůrek a tunýlků: • každý tunýlek vede z komůrky do komůrky (tzn. žádný není slepý), • z každé komůrky vedou právě tři tunýlky do tří různých komůrek, • z každé komůrky se lze tunýlky dostat do kterék
  11. Renju
    gomoku Ve hře renju začínající hráč rozloží první tři kameny (černý, bílý a černý) na průsečíky na desce, rozdělené 15vodorovnými a 15svislími přímkami, tak, že vzniká 225 průsečíků, s dodržením následujícího pravidla: první kámen(černý) musí být ve středu desk
  12. Až bude
    age_7 Až bude Bedřichovy tolik let co je Adamovy dnes, bude mít Adam 14 let. Kdyz bude Adamovy tolik let kolik ma Bedřich dnes byli Bedřichovy dva roky. Kolik let je dnes Adamovy a Bedřichovy
  13. Žáci
    cinema2 V první řadě sedí 3 žáci, v každé další řadě o 11 žáků více než v předchozím řadě. Určete, kolik je v místnosti žáků, je-li v místnosti 9 řad, a určete, kolik žáků je v sedmé řadě.
  14. Matka a dcéra
    matka_rodina Matka je šestkrát starší než dcera. Za dvacet let bude matka dvakrát starší než dcera. Kolik je matce a kolik dceři ?
  15. Bonbóny
    bonbon Dá-li Alena Lence 3 bonbóny, bude mít stále ještě o 1 bonbón více. Dá-li Lenka Aleně 1 bonbón, bude jich mít Alena dvakrát vice než Lenka. Kolik bonbónů má každá z nich?
  16. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  17. Anténky
    antenas Když mi dáš dvě antény budeme mít stejně a ty když mi zas daš tvé dvě antény budu mít 5× tolik co ty. Kolik mají oba antének.