Betka

Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládalo se pouze z číslic myšleného čísla (avšak nemuselo obsahovat všechny jeho cifry). Erice se Betkino číslo zalíbilo a chtěla najít jiné číslo se stejnými vlastnostmi. Zjistila, že neexistuje menší takové číslo jako Betkino a větší se jí hledat nechtělo. Určete, jaké číslo si myslela Bětka a jaké číslo by mohla najít Erika, kdyby měla více trpělivosti.

Výsledek

b =  1032
e =  2301

Řešení:

Textové řešení b =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

7 komentářů (8 odpovědí celkově):
#1
Peter2
Nápověda. Zvažujte postupně možnosti, kdy je myšlené číslo jednomístné, dvojmístné atd. V jednotlivých případech přemýšlejte postupně nad možnými součty na místě jednotek, desítek atd.

Možné řešení. Nejprve najdeme Bětčino číslo, tj. nejmenší číslo s uvedenými vlastnostmi.
1) Předpokládejme, že Bětčino číslo je jednomístné, a označíme si je a. Potom by podle zadání muselo platit a + a = a, což platí pouze když a = 0. Nula však není přirozené číslo, takže Bětčino myšlené číslo nemůže být jednomístné.
2) Předpokládejme, že Bětčino číslo je dvojmístné, a označíme si je ab. Ať už součet ab + ba dopadne jakkoli, na místě jednotek čteme buď b + a = a, nebo b + a = b. Odtud dostáváme buď b = 0, nebo a = 0. V takovém případě by však buď číslo ba, nebo číslo ab nebylo dvojmístné. Bětčino myšlené číslo tedy nemůže být dvojmístné.
3) Předpokládejme, že Bětčino číslo je trojmístné, a označíme si je abc. Ze stejného důvodu jako výše nemohou být čísla a a c nuly, tedy v součtu abc+cba se na místě jednotek může objevit jedině b:

a b c
c b a
____
∗ ∗ b

Současně c + a nemůže být větší než 9, protože potom by celkový součet abc + cba nebyl trojmístný. Odtud se dozvídáme, že

a + c = b

což mimo jiné znamená, že ani číslice b nemůže být 0. Odtud plyne, že součet b + b na místě desítek nemůže být menší než 10; v takovém případě by tento součet byl roven jednomu z čísel a, b, c, což vždy vede k nějakému sporu s předchozími poznatky:

Pokud b + b = a nebo b + b = c, potom podle (1) dostáváme 2a + 2c = a nebo 2a + 2c = c, tedy a = −2c nebo c = −2a, což není možné.
• Pokud b + b = b, potom b = 0, což není možné.
Součet b + b na místě desítek však nemůže být ani větší než 9. V takovém případě by součet na místě stovek byl a + c + 1 a toto číslo má být rovno jednomu z čísel a, b, c; to vždy vede k nějakému sporu:
• Pokud a + c + 1 = a nebo a + c + 1 = c, potom c = −1 nebo a = −1, což není možné.
• Pokud a+c+ 1 = b, potom podle (1) dostáváme b+ 1 = b, tedy 1 = 0, což není možné.

Bětčino myšlené číslo tedy nemůže být ani trojmístné.

4) Předpokládejme, že Bětčino číslo je čtyřmístné, a označíme si je abcd. Ze stejného důvodu jako výše nemohou být čísla a a d nuly, tedy v součtu abcd + dcba se na místě jednotek může objevit buď b, nebo c:

a b c d
d c b a
----------
∗ ∗ ∗ b

a b c d
d c b a
----------
∗ ∗ ∗ c

Současně d + a nemůže být větší než 9, protože potom by celkový součet abcd + dcba nebyl čtyřmístný. Odtud se dozvídáme, že
buď a + d = b, (dale jen 2)
nebo a + d = c. (dale jen 3)

To mimo jiné znamená, že buď b <> 0, nebo c <> 0.
Nyní předpokládáme, že součet c+b na místě desítek je menší než 10, tzn. tento součet je roven jednomu z čísel a, b, c, d, a prozkoumáme jednotlivé případy. Nejprve uvažujme platnost (2), a tedy b <> 0:

• Pokud b + c = a nebo b + c = d, potom podle (2) dostáváme a + d + c = a nebo a + d + c = d, tedy c = −d nebo c = −a, což není možné.
• Pokud b + c = b, potom c = 0 (což ničemu nevadí).
• Pokud b + c = c, potom b = 0, což není možné.
Podobně, za předpokladu (3) zjistíme, že jediná přípustná možnost je
• b + c = c, tedy b = 0

Celkem tak objevujeme dva možné případy:
a b 0 d
d 0 b a
----------
b b b b

a 0 c d
d c 0 a
----------
c c c c

Protože Bětčino číslo je nejmenší číslo vyhovující všem uvedeným podmínkám, vůbec se nemusíme zabývat případem, kdy součet c + b je větší než 9, a soustředíme se výhradně na druhou z výše jmenovaných možností, tj. b = 0. Dosadíme nejmenší možné číslo na místo tisícovek a = 1 a zjišťujeme, že c = d + 1. Nejmenší vyhovující možnost je d = 2 a c = 3. Bětka si tedy hrála s číslem 1032 a její výpočet vypadal takto:

1 0 3 2
2 3 0 1
----------
3 3 3 3

Z výše uvedeného je nyní snadné doplnit nějaké jiné číslo s uvedenými vlastnostmi, tedy nějaké Eričino číslo. Např. stačí v Bětčině čísle zaměnit číslice na místě jednotek a tisícovek nebo číslice na místě desítek a stovek, příp. uvažovat jakákoli čísla tvaru (4). Mezi možnými řešeními jsou také čísla, kdy součet c+b je větší než 9. Zde je několik řešení, na která mohla Erika přijít, kdyby ovšem nebyla tak netrpělivá:

1 0 4 3
3 4 0 1
----------
4 4 4 4

1 3 0 2
2 0 3 1
----------
3 3 3 3

1 8 9 7
7 9 8 1
----------
9 8 7 8

Poznámky. a) Pokud umíme zdůvodnit, že hledané Bětčino číslo musí být aspoň čtyřmístné, potom je lze snadno najít zkoušením:

Nejmenší čtyřmístné číslo s navzájem různými číslicemi je 1023. Toto číslo však není řešením, neboť 1023 + 3201 = 4224. Pokud nás napadne prohodit číslice 2 a 3, dostaneme vyhovující řešení: 1032 + 2301 = 3333. Abychom se přesvědčili, že toto řešení je nejmenší možné, stačí ověřit, že žádné číslo mezi 1023 a 1032 nevyhovuje některé z uvedených podmínek.
b) Nahrazení ostatních úvah zkoušením je také možné, avšak často velmi pracné. Nicméně pokud je řešení založené na zkoušení úplné, nechť je považováno za správné.
Jakékoli dílčí obecné postřehy mohou počet možností k prozkoušení zajímavě snižovat (např. počet trojic různých čísel od 1 do 9 vyhovujících rovnosti (1) jistě není větší než 32.

2 roky  2 Likes
#2
Žák
A proc neni nejmenším hledaným číslem 1021?

#3
Žák
Pretoze musi mat navzajom rozne cifry :)

#4
Žák
Pretoze musi mat navzajom rozne cifry :)

#5
žák01
Proč to nemůže být například 10?

10 + 01 = 11

To stejné platí pro všechny násobky deseti až do devadesáti.

#1
Protože 01, 02, atd. nejsou čísla.....

#6
Mik
K nápovědě Peter2 - bod 2 dvojmístné číslo, "Předpokládejme, že Bětčino číslo je dvojmístné, a označíme si je ab. Ať už součet ab + ba dopadne jakkoli, na místě jednotek čteme buď b + a = a, nebo b + a = b. Odtud dostáváme buď b = 0, nebo a = 0. V takovém případě by však buď číslo ba, nebo číslo ab nebylo dvojmístné"

To je sice pravda, ale v zadání není napsáno, že zadáním čísel odzadu má vzniknout opět číslo se stejným počtem míst ("Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo")

Řekl bych tedy, že násobky deseti do devadesáti mohou být řešením.

#7
Žák
vysledek muze mit i vice mist treba ....10403 nebo 18971897

avatar









Další podobné příklady:

  1. Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  2. Z7-I-4 MO 2017
    math_mo_2 Na stole leželo šest kartiček s ciframi 1, 2, 3, 4, 5, 6. Anežka z těchto kartiček složila šestimístné číslo, které bylo dělitelné šesti. Potom postupně odebírala kartičky zprava. Když odebrala první kartičku, zůstalo na stole pětimístné číslo dělitelné p
  3. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  4. MO C - 2017
    math_mo Najděte nejmenší čtyřmístné číslo abcd takové, že rozdíl (ab)2−(cd)2 je trojmístné číslo zapsané třemi stejnými číslicemi.
  5. Vláček
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vago
  6. Z9-I-6 MO 2017
    olympics_1 Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
  7. MO Z8–I–3 - 2017 - Adélka
    numbers2_32 Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
  8. Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  9. Hvězdičková rovnice
    numbers_37 Napište namísto hvězdiček cifry tak, aby součet vyplněných cifer byl lichý a aby platila uvedená rovnost: 42 · ∗8 = 2 ∗∗∗
  10. Z5–I–6 MO 2017
    prime_1 Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách. Které kartičky mohly zůstat na stole? Určete všech
  11. Bonbóny MO Z6-I-5 2017
    cukriky_10 V plechovce byly červené a zelené bonbóny. Čeněk snědl 2/5 všech červených bonbónů a Zuzka snědla 3/5 všech zelených bonbónů. Teď tvoří červené bonbóny 3/8 všech bonbónů v plechovce. Kolik nejméně bonbónů mohlo být původně v plechovce?
  12. Z7-I-4 hvězdičky 4949
    hviezdicky_mo Napište namísto hvězdiček, aby následující zápis součinu dvou čísel byl platný: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗
  13. Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  14. MO Z6 I-3 2017 sklenice
    MO_Z6_2017 Honza měl 100 stejných zavařovacích sklenic, z kterých si stavěl trojboké pyramidy. Nejvyšší poschodí pyramidy má vždy jednu sklenici, druhé poschodí shora představuje rovnostranný trojúhelník, jehož strana sestává ze dvou sklenic, atd. Příklad konstrukce
  15. Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  16. Zvonkohra
    Zvonkohra.JPG Zvonkohra na nádvoří hraje v každou celou hodinu krátkou skladbu, a to počínaje 8. a konče 22. hodinou. Skladeb je celkem osmnáct, v celou hodinu se hraje vždy jen jedna a po odehrání všech osmnácti se začíná ve stejném pořadí znovu. Olga a Libor byli na
  17. Hodinář
    clock-night-schr Starý hodinář má ve své sbírce zvláštní digitální budík, který zvoní vždy, když součet cifer, který budík ukazuje, se rovná číslu 21. Zjisti, ve kterých časech bude budík zvonit. Jaký je jejich počet? Vypiš všechny možnosti ...