Betka

Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládalo se pouze z číslic myšleného čísla (avšak nemuselo obsahovat všechny jeho cifry). Erice se Betkino číslo zalíbilo a chtěla najít jiné číslo se stejnými vlastnostmi. Zjistila, že neexistuje menší takové číslo jako Betkino a větší se jí hledat nechtělo. Určete, jaké číslo si myslela Bětka a jaké číslo by mohla najít Erika, kdyby měla více trpělivosti.

Výsledek

b =  1032
e =  2301

Řešení:

Textové řešení b =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

7 komentářů (8 odpovědí celkově):
#1
Peter2
Nápověda. Zvažujte postupně možnosti, kdy je myšlené číslo jednomístné, dvojmístné atd. V jednotlivých případech přemýšlejte postupně nad možnými součty na místě jednotek, desítek atd.

Možné řešení. Nejprve najdeme Bětčino číslo, tj. nejmenší číslo s uvedenými vlastnostmi.
1) Předpokládejme, že Bětčino číslo je jednomístné, a označíme si je a. Potom by podle zadání muselo platit a + a = a, což platí pouze když a = 0. Nula však není přirozené číslo, takže Bětčino myšlené číslo nemůže být jednomístné.
2) Předpokládejme, že Bětčino číslo je dvojmístné, a označíme si je ab. Ať už součet ab + ba dopadne jakkoli, na místě jednotek čteme buď b + a = a, nebo b + a = b. Odtud dostáváme buď b = 0, nebo a = 0. V takovém případě by však buď číslo ba, nebo číslo ab nebylo dvojmístné. Bětčino myšlené číslo tedy nemůže být dvojmístné.
3) Předpokládejme, že Bětčino číslo je trojmístné, a označíme si je abc. Ze stejného důvodu jako výše nemohou být čísla a a c nuly, tedy v součtu abc+cba se na místě jednotek může objevit jedině b:

a b c
c b a
____
∗ ∗ b

Současně c + a nemůže být větší než 9, protože potom by celkový součet abc + cba nebyl trojmístný. Odtud se dozvídáme, že

a + c = b

což mimo jiné znamená, že ani číslice b nemůže být 0. Odtud plyne, že součet b + b na místě desítek nemůže být menší než 10; v takovém případě by tento součet byl roven jednomu z čísel a, b, c, což vždy vede k nějakému sporu s předchozími poznatky:

Pokud b + b = a nebo b + b = c, potom podle (1) dostáváme 2a + 2c = a nebo 2a + 2c = c, tedy a = −2c nebo c = −2a, což není možné.
• Pokud b + b = b, potom b = 0, což není možné.
Součet b + b na místě desítek však nemůže být ani větší než 9. V takovém případě by součet na místě stovek byl a + c + 1 a toto číslo má být rovno jednomu z čísel a, b, c; to vždy vede k nějakému sporu:
• Pokud a + c + 1 = a nebo a + c + 1 = c, potom c = −1 nebo a = −1, což není možné.
• Pokud a+c+ 1 = b, potom podle (1) dostáváme b+ 1 = b, tedy 1 = 0, což není možné.

Bětčino myšlené číslo tedy nemůže být ani trojmístné.

4) Předpokládejme, že Bětčino číslo je čtyřmístné, a označíme si je abcd. Ze stejného důvodu jako výše nemohou být čísla a a d nuly, tedy v součtu abcd + dcba se na místě jednotek může objevit buď b, nebo c:

a b c d
d c b a
----------
∗ ∗ ∗ b

a b c d
d c b a
----------
∗ ∗ ∗ c

Současně d + a nemůže být větší než 9, protože potom by celkový součet abcd + dcba nebyl čtyřmístný. Odtud se dozvídáme, že
buď a + d = b, (dale jen 2)
nebo a + d = c. (dale jen 3)

To mimo jiné znamená, že buď b <> 0, nebo c <> 0.
Nyní předpokládáme, že součet c+b na místě desítek je menší než 10, tzn. tento součet je roven jednomu z čísel a, b, c, d, a prozkoumáme jednotlivé případy. Nejprve uvažujme platnost (2), a tedy b <> 0:

• Pokud b + c = a nebo b + c = d, potom podle (2) dostáváme a + d + c = a nebo a + d + c = d, tedy c = −d nebo c = −a, což není možné.
• Pokud b + c = b, potom c = 0 (což ničemu nevadí).
• Pokud b + c = c, potom b = 0, což není možné.
Podobně, za předpokladu (3) zjistíme, že jediná přípustná možnost je
• b + c = c, tedy b = 0

Celkem tak objevujeme dva možné případy:
a b 0 d
d 0 b a
----------
b b b b

a 0 c d
d c 0 a
----------
c c c c

Protože Bětčino číslo je nejmenší číslo vyhovující všem uvedeným podmínkám, vůbec se nemusíme zabývat případem, kdy součet c + b je větší než 9, a soustředíme se výhradně na druhou z výše jmenovaných možností, tj. b = 0. Dosadíme nejmenší možné číslo na místo tisícovek a = 1 a zjišťujeme, že c = d + 1. Nejmenší vyhovující možnost je d = 2 a c = 3. Bětka si tedy hrála s číslem 1032 a její výpočet vypadal takto:

1 0 3 2
2 3 0 1
----------
3 3 3 3

Z výše uvedeného je nyní snadné doplnit nějaké jiné číslo s uvedenými vlastnostmi, tedy nějaké Eričino číslo. Např. stačí v Bětčině čísle zaměnit číslice na místě jednotek a tisícovek nebo číslice na místě desítek a stovek, příp. uvažovat jakákoli čísla tvaru (4). Mezi možnými řešeními jsou také čísla, kdy součet c+b je větší než 9. Zde je několik řešení, na která mohla Erika přijít, kdyby ovšem nebyla tak netrpělivá:

1 0 4 3
3 4 0 1
----------
4 4 4 4

1 3 0 2
2 0 3 1
----------
3 3 3 3

1 8 9 7
7 9 8 1
----------
9 8 7 8

Poznámky. a) Pokud umíme zdůvodnit, že hledané Bětčino číslo musí být aspoň čtyřmístné, potom je lze snadno najít zkoušením:

Nejmenší čtyřmístné číslo s navzájem různými číslicemi je 1023. Toto číslo však není řešením, neboť 1023 + 3201 = 4224. Pokud nás napadne prohodit číslice 2 a 3, dostaneme vyhovující řešení: 1032 + 2301 = 3333. Abychom se přesvědčili, že toto řešení je nejmenší možné, stačí ověřit, že žádné číslo mezi 1023 a 1032 nevyhovuje některé z uvedených podmínek.
b) Nahrazení ostatních úvah zkoušením je také možné, avšak často velmi pracné. Nicméně pokud je řešení založené na zkoušení úplné, nechť je považováno za správné.
Jakékoli dílčí obecné postřehy mohou počet možností k prozkoušení zajímavě snižovat (např. počet trojic různých čísel od 1 do 9 vyhovujících rovnosti (1) jistě není větší než 32.

2 roky  2 Likes
#2
Žák
A proc neni nejmenším hledaným číslem 1021?

#3
Žák
Pretoze musi mat navzajom rozne cifry :)

#4
Žák
Pretoze musi mat navzajom rozne cifry :)

#5
žák01
Proč to nemůže být například 10?

10 + 01 = 11

To stejné platí pro všechny násobky deseti až do devadesáti.

#1
Protože 01, 02, atd. nejsou čísla.....

#6
Mik
K nápovědě Peter2 - bod 2 dvojmístné číslo, "Předpokládejme, že Bětčino číslo je dvojmístné, a označíme si je ab. Ať už součet ab + ba dopadne jakkoli, na místě jednotek čteme buď b + a = a, nebo b + a = b. Odtud dostáváme buď b = 0, nebo a = 0. V takovém případě by však buď číslo ba, nebo číslo ab nebylo dvojmístné"

To je sice pravda, ale v zadání není napsáno, že zadáním čísel odzadu má vzniknout opět číslo se stejným počtem míst ("Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo")

Řekl bych tedy, že násobky deseti do devadesáti mohou být řešením.

#7
Žák
vysledek muze mit i vice mist treba ....10403 nebo 18971897

avatar









Další podobné příklady:

  1. Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  2. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  3. Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  4. Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  5. Myšky - Z9–I–5
    Mysky Myšky si postavily podzemní domeček sestávající z komůrek a tunýlků: • každý tunýlek vede z komůrky do komůrky (tzn. žádný není slepý), • z každé komůrky vedou právě tři tunýlky do tří různých komůrek, • z každé komůrky se lze tunýlky dostat do kterék
  6. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  7. MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  8. Klávesy
    klavesy Míša mel na poličce malé klávesy, které vidíte na obrázku. Na bílých klávesách byly vyznačeny jejich tóny. Klávesy našla malá Klára. Když je brala z poličky, vypadly jí z ruky a všechny bílé klávesy se z nich vysypaly. Aby se bratr nezlobil, začala je Klá
  9. Z9–I–2
    map_mo Z bodu A do bodu C vede naučná stezka procházející bodem B a jinudy také červená turistická značka, viz obrázek. Kromě toho lze použít také nezakreslenou zkratku dlouhou 1 500 metrů začínající v A a ústící na naučné stezce. Vojtěch zjistil, že: • výlet z
  10. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  11. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  12. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  13. Mo - kružnice
    mo Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která b
  14. Lichoběžník MO-5-Z8
    lichobeznik_mo_z8 Lichoběžník ABCD je úsečkou CE rozdělen na trojúhelník a rovnoběžník, viz obrázek. Bod F je středem úsečky CE, přímka DF prochází středem úsečky BE a obsah trojúhelníku CDE je 3 cm2. Určete obsah lichoběžníku ABCD.
  15. Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.
  16. Katka MO
    reporter_saved6 Katka narýsovala trojúhelník ABC. Střed strany AB si označila jako X a střed strany AC jako Y . Na straně BC chce najít takový bod Z, aby obsah čtyřúhelníku AXZY byl co největší. Jakou část trojúhelníku ABC může maximálně zabírat čtyřúhelník AXZY ?
  17. Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek