Příklady na kužel - strana 3 z 14
Počet nalezených příkladů: 262
- Základní 2
Základní parametry rotačního kužele jsou: Poloměr podstavy 5 cm Výška kužele 12 cm a strana kužele 13 cm. Vypočítej: a/objem kužele b/povrch kužele
- Šikmo
Obrázek znázorňuje kužel se šikmou výškou (stranou) 10,5 cm. Zakřivená plocha kužele 115,5 cm². Vypočtěte na 3 platné číslice: * Poloměr základny * výšku * Objem kužele
- Rovnostranné těleso
Rotační těleso vzniklo rotací rovnostranného trojúhelníku o délce strany a=2 cm kolem jedné z jeho stran. Vypočítejte objem tohoto rotačního tělesa.
- Osový řez
Osovým řezem kužele, jehož povrch je 208 m², je rovnostranný trojúhelník. Vypočítejte objem kužele.
- Stínidlo
Stínidlo ve tvaru kužele má průměr 30 cm a výšku 10 cm. Kolik cm² materiálu budeme potřebovat, počítáme-li 10% na odpad?
- Kužel 16
Povrch rotačního kužele je 30 cm2, obsah jeho pláště je 20 cm². Vypočtěte odchylku strany tohoto kužele od roviny podstavy.
- Kužel
Rotační kužel o výšce 19 cm a objemu 2148 cm³ je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu.
- Správce hradu
Správce hradu se pokouší odhadnout, kolik čtverečných metrů plechu bude přibližně třeba na novou střechu věže. Střecha má tvar kužele. Správce hradu ví, že průměr věže je 4,6 metru a výška je 5,2 metru. Kolik čtverečných metrů střecha měří?
- Kužel
Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
- Předpokládáte 83985
Stínítko lampy má tvar pláště rotačního kuželu se stranou 32 cm a průměrem podstavy 46 cm. Vypočítejte spotřebu papíru na jeho výrobu pokud předpokládáte, že odpad bude 6%
- Terwilliker 75264
Hromada soli byla uložena ve tvaru kužele. Pan Terwilliker ví, že hromada je 20 stop vysoká a 102 stop v obvodu na základně. Jaká plocha kónické plachty (velký kus materiálu) je potřebná k zakrytí hromady?
- Osový řez
Osový řez kužele je rovnoramenný trojúhelník, v němž je poměr průměru kužele a stěny kužele 2:3. Vypočtěte jeho objem, pokud víte, že jeho plocha je 314 cm čtverečních.
- Čepice
Šaškova čepice má tvar rotačního kužele. Vypočítejte kolik papíru je třeba utratit na čepici 50 cm vysokou na obvod hlavy 60 cm.
- Zámecká věž
Zámecká věž má střechu kuželu s průměrem 10 metrů a výškou 8 metrů. Vypočítejte, kolik m² krytiny je třeba na její pokrytí, uvažujeme-li navíc jednu třetinu na překrytî.
- Urči poloměr
Urči poloměr podstavy kužele, jestliže jeho plášť se rozvine v kruhovou výseč s poloměrem „s"=10 a středovým úhlem x=60°. r=?, o=?
- Kužel - RS trojúhelník
Povrch kužele je 388,84 cm², osový řez je rovnostranný trojúhelník. Určete objem kužele.
- Rotační kužel
Objem rotačního kužele je 733 cm³ a strana kužele svírá s rovinou podstavy úhel 75°. Vypočítejte obsah pláště rotačního kužele.
- Vypočítejte 69174
Střecha věže má tvar pláště rotačního kužele o průměru podstavy 4,3m. Odchylka strany od roviny podstavy je 36°. Vypočítejte spotřebu plechu na pokrytí střechy, počítáme-li 8 % na odpad.
- Střecha - krytina
Střecha hradní věže má tvar kužele o průměru podstavy 12 m a výšce 8m. Kolik eur zaplatíme za pokrytí střechy, pokud 1m čtvereční krytiny stojí 3,5 eura?
- Poměr obsahů
Poměr obsahu podstavy rotačního kužele k jeho plášti je 3:5. Vypočítejte povrch a objem kužele, pokud jeho výška v = 4 cm.
Máš příklad z matematiky, který jsi tady nenašel vyřešený? Pošli nám tenhle příklad a my Ti ho zkusíme vypočítat.