Příklady na kužel - strana 3 z 13
Počet nalezených příkladů: 259
- Urči poloměr
Urči poloměr podstavy kužele, jestliže jeho plášť se rozvine v kruhovou výseč s poloměrem „s"=10 a středovým úhlem x=60°. r=?, o=?
- Kužel
Rotační kužel o výšce 19 cm a objemu 2148 cm³ je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu.
- Osový řez
Osovým řezem kužele, jehož povrch je 208 m², je rovnostranný trojúhelník. Vypočítejte objem kužele.
- Šikmo
Obrázek znázorňuje kužel se šikmou výškou (stranou) 10,5 cm. Zakřivená plocha kužele 115,5 cm². Vypočtěte na 3 platné číslice: * Poloměr základny * výšku * Objem kužele
- Rotační kužel
Objem rotačního kužele je 733 cm³ a strana kužele svírá s rovinou podstavy úhel 75°. Vypočítejte obsah pláště rotačního kužele.
- Rovnostranné těleso
Rotační těleso vzniklo rotací rovnostranného trojúhelníku o délce strany a=2 cm kolem jedné z jeho stran. Vypočítejte objem tohoto rotačního tělesa.
- Stínidlo
Stínidlo ve tvaru kužele má průměr 30 cm a výšku 10 cm. Kolik cm² materiálu budeme potřebovat, počítáme-li 10% na odpad?
- Čepice
Šaškova čepice má tvar rotačního kužele. Vypočítejte kolik papíru je třeba utratit na čepici 50 cm vysokou na obvod hlavy 60 cm.
- Kužel
Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
- Kužel 16
Povrch rotačního kužele je 30 cm2, obsah jeho pláště je 20 cm². Vypočtěte odchylku strany tohoto kužele od roviny podstavy.
- Správce hradu
Správce hradu se pokouší odhadnout, kolik čtverečných metrů plechu bude přibližně třeba na novou střechu věže. Střecha má tvar kužele. Správce hradu ví, že průměr věže je 4,6 metru a výška je 5,2 metru. Kolik čtverečných metrů střecha měří?
- Kužel - RS trojúhelník
Povrch kužele je 388,84 cm², osový řez je rovnostranný trojúhelník. Určete objem kužele.
- Kužel
Obsah pláště kužele je 4 cm², obsah podstavy kužele je 2 cm². Určete v stupních úhel (odchylku) strany kužele a roviny podstavy kužele. (Strana kužele je úsečka spojující vrchol kužele s libovolným bodem kružnice podstavy. Všechny strany kužele tvoří pláš
- Předpokládáte 83985
Stínítko lampy má tvar pláště rotačního kuželu se stranou 32 cm a průměrem podstavy 46 cm. Vypočítejte spotřebu papíru na jeho výrobu pokud předpokládáte, že odpad bude 6%
- Terwilliker 75264
Hromada soli byla uložena ve tvaru kužele. Pan Terwilliker ví, že hromada je 20 stop vysoká a 102 stop v obvodu na základně. Jaká plocha kónické plachty (velký kus materiálu) je potřebná k zakrytí hromady?
- Zámecká věž
Zámecká věž má střechu kuželu s průměrem 10 metrů a výškou 8 metrů. Vypočítejte, kolik m² krytiny je třeba na její pokrytí, uvažujeme-li navíc jednu třetinu na překrytî.
- Trojúhelníku 25091
Tenká destička tvaru pravoúhlého trojúhelníku se jednou otočí kolem kratší odvěsny a podruhé kolem delší odvěsny. Rotací se popíší kužely. Mají stejný objem? Rozměry jsou: kratší odvěsna 6cm, delší odvěsna 8cm.
- Osový řez
Osový řez kužele je rovnoramenný trojúhelník, v němž je poměr průměru kužele a stěny kužele 2:3. Vypočtěte jeho objem, pokud víte, že jeho plocha je 314 cm čtverečních.
- Vypočítejte 69174
Střecha věže má tvar pláště rotačního kužele o průměru podstavy 4,3m. Odchylka strany od roviny podstavy je 36°. Vypočítejte spotřebu plechu na pokrytí střechy, počítáme-li 8 % na odpad.
- Střecha - krytina
Střecha hradní věže má tvar kužele o průměru podstavy 12 m a výšce 8m. Kolik eur zaplatíme za pokrytí střechy, pokud 1m čtvereční krytiny stojí 3,5 eura?
Máš příklad, nad kterým si přemýšlíš alespoň 10 minut? Pošli nám příklad a my Ti ho zkusíme vypočítat.