Kužel

Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.

Správný výsledek:

V =  349,0659 cm3
S =  314,1593 cm2

Řešení:

h=10 cm A=30 rad=30 π180 =30 3.1415926180 =0.5236=π/6  tgA=r:h  r=h tg(A)=10 tg(0.5236)5.7735 cm  S1=π r2=3.1416 5.77352104.7198 cm2  V=13 S1 h=13 104.7198 10=349.0659 cm3
s=h2+r2=102+5.7735211.547 cm S2=π r s=3.1416 5.7735 11.547209.4395 cm2 S=S1+S2=104.7198+209.4395=314.1593 cm2



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Kužel 16
    kuzel2_1 Povrch rotačního kužele je 30 cm2, obsah jeho pláště je 20 cm2. Vypočtěte odchylku strany tohoto kužele od roviny podstavy.
  • Hranol 4b-pravidelný
    hranol4sreg Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.
  • Poměr obsahů
    kuzel2 Poměr obsahu podstavy rotačního kužele k jeho plášti je 3: 5. Vypočítejte povrch a objem kužele, pokud jeho výška v = 4 cm.
  • Komolý kužel
    zrezany_kuzel Vypočtěte objem a povrch komolého kužele, pokud r1 = 12 cm, r2 = 5 cm a strana s = 10 cm.
  • Úhel
    valec_8 Objem rotačního kužele je 9,42 cm3, přičemž výška je rovna 10 cm. Jaký úhel svírá strana kužele s rovinnou podstavy?
  • Rotační kužel
    cone_3 Objem rotačního kužele je 296 cm3 a strana kužele svírá s rovinou podstavy úhel 80°. Vypočítejte obsah pláště rotačního kužele.
  • Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
  • Osový řez
    rez_kuzel Osový řez kužele je rovnoramenný trojúhelník, v němž je poměr průměru kužele a stěny kužele 2: 3. Vypočtěte jeho objem, pokud víte, že jeho plocha je 314 cm čtverečních.
  • Kužel
    cone-blue Vypočítej objem a povrch kužele, pokud průměr podstavy je d = 17 cm a strana kužele svírá s rovinou podstavy úhel 38°48'.
  • Úhlopříčka
    hranol222_2 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60 stupňů, délka hrany postavy je 10 cm. Jaký je objem tělesa?
  • Jehlan 8
    ihlan Vypočítej objem a povrch pravidelného čtyřbokého jehlanu se stranou podstavy 9 cm, boční stěna svírá s podstavou úhel 75°.
  • Kužel 19
    kuzel2 Kužel má průměr podstavy 1,5 m. Úhel při hlavním vrcholu osového řezu má velikost 86°. Vypočítejte objem kužele.
  • Vypočtěte 12
    ngon Vypočtěte povrch a objem pravidelného devítibokého jehlanu, měří-li poloměr kružnice vepsané podstavě ρ= 12 cm a výška jehlanu je 24 cm
  • Kolmý jehlan
    pyramid_4 Vypočtěte objem kolmého jehlanu, jehož boční strana délky 5cm zvíře se čtvercovou podstavou úhel s velikostí 60 stupňů.
  • Řez kužele
    cone_slice Objem kužele je 1000 cm3 a obsah jeho řezu je 100 cm2. Vypočtěte povrch kužele.
  • Kužel
    kuzel Vypočtěte objem a povrch kužele, jestliže jeho poloměr r = 6 cm a strana s = 10 cm.
  • Čtyřboký hranol
    hranol Výška pravidelného čtyřbokého hranolu je v = 10 cm, odchylka tělesových úhlopříčky od podstavy je 60°. Určete délku podstavových hran, povrch a objem kvádru.