Kolmý jehlan

Vypočtěte objem kolmého jehlanu, jehož boční strana délky 5cm zvíře se čtvercovou podstavou úhel s velikostí 60 stupňů.

Správný výsledek:

V =  18,0422 cm3

Řešení:

s=5 cm A=60 cos(A)=(u/2)/s cos(A)=u/(2s) u=2 s cos(A rad)=2 s cos(A π180 )=2 5 cos(60 3.1415926180 )=5 cm a=u/2=5/23.5355 cm S=a2=3.53552=252=12.5 cm2 h=s sin(A rad)=s sin(A π180 )=5 sin(60 3.1415926180 )=4.33013 cm V=S h/3=12.5 4.3301/3=18.0422 cm3



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • 4-boký jehlan v1
    ihlany Vypočítej objem a povrch pravidelného 4bokého jehlanu, jehož podstavna hrana je 4 cm. Odchylka bočni steny od roviny je 60 stupňů.
  • Jehlan 8
    ihlan Vypočítej objem a povrch pravidelného čtyřbokého jehlanu se stranou podstavy 9 cm, boční stěna svírá s podstavou úhel 75°.
  • Osmiboký jehlan
    octagonl_pyramid2 Urči objem pravidelného osmibokého jehlanu, jehož výška v = 100 a úhel boční hrany s rovinou podstavy je α = 60°.
  • V pravidelném 2
    jehlan3 V pravidelném čtyřbokem jehlanu je výška 6,5 cm a úhel mezi podstavou a boční stěnou je 42°. Vypočítej povrch a objem tělesa. Výpočty zaokrouhlit na 1 desetinné místo.
  • Úhlopříčka
    hranol222_2 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60 stupňů, délka hrany postavy je 10 cm. Jaký je objem tělesa?
  • Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
  • 4-boký jehlan v2
    pyramid_4s Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm2. Odchylka boční hrany od roviny podstavy je 60 stupňů.
  • Tělesová
    hranol_9 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel velikosti 60°. Hrana podstavy má délku 10cm. Vypočítejte objem tělesa.
  • Hranol 4b 2
    hranol4sreg_6 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60°. Hrana podstavy má délku 20 cm. Vypočtěte objem tělesa.
  • Jehlan 6
    komoly Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
  • Hranol 4b-pravidelný
    hranol4sreg Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.
  • Funkce sinus, kosinus
    triangle2 Vypočítej velikosti zbývajících stran a úhlů pravoúhlého trojúhelníku ABC, jestliže je dáno: b=10cm; c=20cm; úhel alfa= 60° a úhel beta= 30° (použij Pytagorovu větu a funkce sinus, kosinus, tangens, kotangens)
  • V pravidelném 3
    jehlan_4b_obdelnik V pravidelném čtyřbokém jehlanu je délka podstavné hrany a = 8 cm a délka boční hrany h = 17 cm. Vypočtěte povrch jehlanu.
  • Věž
    pyramid Vypočtěte povrch pravidelného čtyřbokého jehlanu, jehož podstavná hrana měří 6 cm, je-li odchylka roviny boční stěny od roviny podstavy 50 stupňů.
  • Devítiboký jehlan
    9gon+Base+cone Vypočítejte objem a povrch devítibokého jehlanu, jehož podstavě lze vepsat kružnici o poloměru ρ = 7,2 cm a jehož boční hrana s = 10,9 cm.
  • Kužel
    kuzel3 Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
  • Pravoúhlý trojuhelník
    rt_triangle Pravoúhlý trojuhelník úhel alfa 90 stupňů úhel beta 55 stupňů c=10cm vypočíst pythagorovou větou strany a, b