Kolmý jehlan

Vypočtěte objem kolmého jehlanu, jehož boční strana délky 5cm zvíře se čtvercovou podstavou úhel s velikostí 60 stupňů.

Správná odpověď:

V =  18,0422 cm3

Postup správného řešení:

s=5 cm A=60 ° cos(A)=(u/2)/s cos(A)=u/(2s) u=2 s cos(A° rad)=2 s cos(A° π180 )=2 5 cos(60° 3.1415926180 )=5 cm a=u/2=5/23.5355 cm S=a2=3.53552=252=12.5 cm2 h=s sin(A° rad)=s sin(A° π180 )=5 sin(60° 3.1415926180 )=4.33013 cm V=S h/3=12.5 4.3301/3=18.0422 cm3



Našel si chybu či nepřesnost? Klidně nám ji napiš.



avatar




Tipy na související online kalkulačky
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Související a podobné příklady:

  • Úhel úhlopříčky
    jehlan_4b_obdelnik V pravidelném 4-bokem jehlanu zvíře boční hrana s úhlopříčkou podstavy úhel 55°. Délka boční hrany je 8 m. Vypočtěte povrch a objem jehlanu.
  • 4-boký jehlan v1
    ihlany Vypočítej objem a povrch pravidelného 4bokého jehlanu, jehož podstavna hrana je 4 cm. Odchylka bočni steny od roviny je 60 stupňů.
  • Jehlan 8
    ihlan Vypočítej objem a povrch pravidelného čtyřbokého jehlanu se stranou podstavy 9 cm, boční stěna svírá s podstavou úhel 75°.
  • Osmiboký jehlan
    octagonl_pyramid2 Urči objem pravidelného osmibokého jehlanu, jehož výška v = 100 a úhel boční hrany s rovinou podstavy je α = 60°.
  • Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
  • V pravidelném 2
    jehlan3 V pravidelném čtyřbokem jehlanu je výška 6,5 cm a úhel mezi podstavou a boční stěnou je 42°. Vypočítej povrch a objem tělesa. Výpočty zaokrouhlit na 1 desetinné místo.
  • Jehlan
    jehlan Pravidelný 4-boky jehlan má tělesových výšku 2 dm a protilehlé boční hrany svírají úhel 70°. Vypočtěte povrch a objem jehlanu.
  • 4-boký jehlan v2
    pyramid_4s Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm2. Odchylka boční hrany od roviny podstavy je 60 stupňů.
  • Funkce sinus, kosinus
    triangle2 Vypočítej velikosti zbývajících stran a úhlů pravoúhlého trojúhelníku ABC, jestliže je dáno: b=10cm; c=20cm; úhel alfa= 60° a úhel beta= 30° (použij Pytagorovu větu a funkce sinus, kosinus, tangens, kotangens)
  • Pravoúhlý trojuhelník
    rt_triangle Pravoúhlý trojuhelník úhel alfa 90 stupňů úhel beta 55 stupňů c=10cm vypočíst pythagorovou větou strany a, b
  • Hranol 4b-pravidelný
    hranol4sreg Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.
  • Věž
    pyramid Vypočtěte povrch pravidelného čtyřbokého jehlanu, jehož podstavná hrana měří 6 cm, je-li odchylka roviny boční stěny od roviny podstavy 50 stupňů.
  • V pravidelném
    jehlan V pravidelném čtyřbokém jehlanu je podstavná hrana a=6cm, boční hrana b=10cm. Vypočtěte výšku jehlanu.
  • Jehlan 6
    komoly Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
  • Úhlopříčka
    hranol222 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60 stupňů, délka hrany postavy je 10 cm. Jaký je objem tělesa?
  • Jehlan 8
    jehlan_4b_obdelnik Jehlan s obdélníkovou podstavou o rozměrech 6 dm a 8 dm má boční hranu délky 13 dm. Vypočítejte povrch a objem tohoto jehlanu.
  • Šestiboký jehlan
    hexa_pyramid Vypočítejte objem pravidelného šestibokého jehlanu, jehož podstavná hrana má délku 12cm a boční hranu 20cm.