Jehlan 8

Vypočítej objem a povrch pravidelného čtyřbokého jehlanu se stranou podstavy 9 cm, boční stěna svírá s podstavou úhel 75°.

Správný výsledek:

V =  641,27 cm3
S =  516,1171 cm2

Řešení:

a=9 cm S1=a2=92=81 cm2 s=a/2=9/2=92=4.5 cm h=2 s tg75=tg5π/12=23.75063 cm h2=h2+s2=23.75062+4.5224.1732 cm  V=13 S1 h=13 81 23.7506=641.27 cm3
S2=a h2/2=9 24.1732/2108.7793 cm2  S=S1+4 S2=81+4 108.7793=516.1171 cm2



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 2 komentáře:
#
Žák
špatný výpočet!!!!

#
Žák
a co je tam spatnyho?

avatar









Tipy na související online kalkulačky
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • 4-boký jehlan v2
    pyramid_4s Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm2. Odchylka boční hrany od roviny podstavy je 60 stupňů.
  • Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
  • Jehlan 6
    komoly Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
  • V pravidelném 2
    jehlan3 V pravidelném čtyřbokem jehlanu je výška 6,5 cm a úhel mezi podstavou a boční stěnou je 42°. Vypočítej povrch a objem tělesa. Výpočty zaokrouhlit na 1 desetinné místo.
  • Hranol 4b 2
    hranol4sreg_6 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60°. Hrana podstavy má délku 20 cm. Vypočtěte objem tělesa.
  • 4b jehlan 4
    jehlan_2 Vypočítejte povrch pravidelného čtyřbokého jehlanu, je-li dáno: a= 3,2 cm v= 19 cm Postup: 1) výpočet výšky boční stěny 2) obsah podstavy 3) obsah pláště 4) povrch pravidelného čtyřbokého jehlanu
  • Tělesová
    hranol_9 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel velikosti 60°. Hrana podstavy má délku 10cm. Vypočítejte objem tělesa.
  • Osmiboký jehlan
    octagonl_pyramid2 Urči objem pravidelného osmibokého jehlanu, jehož výška v = 100 a úhel boční hrany s rovinou podstavy je α = 60°.
  • Hranol 4b-pravidelný
    hranol4sreg Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.
  • Komolý jehlan
    truncated_pyramid Vypočítejte objem pravidelného 4-bokeho komolého jehlanu, jestliže a1 = 14 cm, a2 = 8 cm a úhel, který svírá boční stěna s podstavou je 42stupňov
  • 4-boký jehlan v1
    ihlany Vypočítej objem a povrch pravidelného 4bokého jehlanu, jehož podstavna hrana je 4 cm. Odchylka bočni steny od roviny je 60 stupňů.
  • Vypočítej 39
    hranol4sreg Vypočítej objem (V) a povrch (S) pravidelného čtyřbokého hranolu, jehož výška je 28,6 cm a odchylka tělesové úhlopříčky od roviny podlahy je 50°.
  • Čtyřboký hranol
    hranol Výška pravidelného čtyřbokého hranolu je v = 10 cm, odchylka tělesových úhlopříčky od podstavy je 60°. Určete délku podstavových hran, povrch a objem kvádru.
  • Kolmý jehlan
    pyramid_4 Vypočtěte objem kolmého jehlanu, jehož boční strana délky 5cm zvíře se čtvercovou podstavou úhel s velikostí 60 stupňů.
  • Věž
    pyramid Vypočtěte povrch pravidelného čtyřbokého jehlanu, jehož podstavná hrana měří 6 cm, je-li odchylka roviny boční stěny od roviny podstavy 50 stupňů.
  • Jehlan pyramída
    pyramid_3 Vypočítej objem a povrch pravidelného čtyřbokého jehlanu, jestliže hrana podstavy je 45 cm dlouhá a výška jehlanu je 7 cm.
  • Kužel
    cone-blue Vypočítej objem a povrch kužele, pokud průměr podstavy je d = 17 cm a strana kužele svírá s rovinou podstavy úhel 38°48'.