Hranol 4b-pravidelný

Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.

Správný výsledek:

V =  8235,5985 cm3
S =  2517,2067 cm2

Řešení:

c=28.6 A=50π/180=50 3.1416/1800.8727 u2=c/tg(A)=28.6/tg(0.8727)23.9982 a=u2/2=23.9982/216.9693 S1=a2=16.96932287.958 V=S1 c=287.958 28.6=8235.5985 cm3
S=2 S1+c 4 a=2 287.958+28.6 4 16.9693=2517.2067 cm2



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2   video3

Další podobné příklady a úkoly:

  • Vypočítej 39
    hranol4sreg Vypočítej objem (V) a povrch (S) pravidelného čtyřbokého hranolu, jehož výška je 28,6 cm a odchylka tělesové úhlopříčky od roviny podlahy je 50°.
  • Tělesová
    hranol_9 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel velikosti 60°. Hrana podstavy má délku 10cm. Vypočítejte objem tělesa.
  • Úhlopříčka
    hranol222_2 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60 stupňů, délka hrany postavy je 10 cm. Jaký je objem tělesa?
  • Hranol 4b 2
    hranol4sreg_6 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60°. Hrana podstavy má délku 20 cm. Vypočtěte objem tělesa.
  • Čtyřboký hranol
    hranol Výška pravidelného čtyřbokého hranolu je v = 10 cm, odchylka tělesových úhlopříčky od podstavy je 60°. Určete délku podstavových hran, povrch a objem kvádru.
  • Hranol z 4B
    hranol4sreg_7 Vypočítej objem a povrch pravidelného čtyřbokého hranolu vysokého 35 cm, uhlopříčka podstavy je 22 cm.
  • Jehlan 8
    ihlan Vypočítej objem a povrch pravidelného čtyřbokého jehlanu se stranou podstavy 9 cm, boční stěna svírá s podstavou úhel 75°.
  • Věž
    pyramid Vypočtěte povrch pravidelného čtyřbokého jehlanu, jehož podstavná hrana měří 6 cm, je-li odchylka roviny boční stěny od roviny podstavy 50 stupňů.
  • Trojboký hranol
    TriangularPrism Rovina, která prochází hranou AB a středem hrany CC' pravidelného trojbokého hranolu ABCA'B'C', svírá s podstavou úhel 39 stupňů, |AB| = 3 cm. Vypočítejte objem hranolu.
  • Hranol 23
    cuboid_13 Hranol ABCDA'B'C'D' má čtvercovou podstavu. Stěnová úhlopříčka AC podstavy má délku 9,9cm, tělesová úhlopříčka AC' má délku 11,4cm. Vypočítejte povrch a objem hranolu.
  • 4-boký jehlan v2
    pyramid_4s Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm2. Odchylka boční hrany od roviny podstavy je 60 stupňů.
  • Kužel
    kuzel3 Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
  • Jehlan 6
    komoly Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
  • Hranol 6b
    hexagon Urč objem šestibokého hranolu pokud hrana podstavy 4 cm. Výška tělesa 28 cm.
  • 4-boký jehlan v1
    ihlany Vypočítej objem a povrch pravidelného 4bokého jehlanu, jehož podstavna hrana je 4 cm. Odchylka bočni steny od roviny je 60 stupňů.
  • Trojboký hranol
    prism3s Pravidelný trojboký hranol je vysoký 7 cm. Jeho podstava je rovnostranný trojúhelník, jehož výška je 3 cm. Vypočítejte povrch a objem tohoto hranolu.
  • Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.