Příklady na obsah trojúhelníka - strana 28 z 44
Počet nalezených příkladů: 880
- Z7–I–2 MO 2017
Jsou dány dvě dvojice rovnoběžných přímek AB k CD a AC k BD. Bod E leží na přímce BD, bod F je středem úsečky BD, bod G je středem úsečky CD a obsah trojúhelníku ACE je 20 cm². Určete obsah trojúhelníku DFG. - V lichoběžníku
V lichoběžníku ABCD jsou dány základny: AB = 12cm CD = 4 cm A úhlopříčky se protínají pod pravým úhlem. Jaký je obsah tohoto lichoběžníku ABCD? - Valec naležato
Válec o průměru 3m a výšce/délce 15 m je položen naležato. Je do něj napuštěna voda, která sahá do výšky 60 cm pod osu válce. Kolik hektolitrů vody je ve válci? - Trojboký jehlan
Vypočítejte objem a povrch pravidelného trojbokého jehlanu, jehož výška je stejná jako délka hrany podstavy 10 cm. - Pravoúhlý lichoběžník
Uveden je pravoúhlý lichoběžník s mírou ostrého úhlu 50°. Délka jeho podstavců je 4 a 6 jednotek. Objem pevné látky získaný rotací daného lichoběžníku kolem delší základny je: - Malovka
Kolik Kč zaplatíte za výmalbu pokoje tvaru kvádru s rozměry podlahy 5 a 4m, když výška pokoje je 3 m. Nebudete malovat podlahu, prostor dveří (210 x 90 cm) a prostor za zrcadlem (rovnostranný trojúhelník se stranou 4 dm). Chcete udělat dvojitý nátěr, vyda - Kornout
Kolik cm² těsta je třeba na výrobu zmrzlinového kornoutu, má-li se do něj vejít 0,3l zmrzliny a jeho výška má být 15 cm. Připočti 8% na přehyby. 1. Převeď litry na cm³ 2. Rozhodni, jaký údaj můžeš dopočítat jako první a z jakého vzorce. 3. Vypočítej údaj - Komolý jehlan
Vypočtěte objem pravidelného šestibokého komolého jehlanu, jestliže je délka hrany dolní podstavy 30 cm, horní podstavy 12 cm a pokud délka boční hrany je 41 cm. - Koule ve kuželi
Do kužele je vepsána koule (průnik jejich hranic se skládá z kružnice a jednoho bodu). Poměr povrchu koule a obsahu podstavy je 4:3. Rovina, která prochází osou kužele, řeže kužel v rovnoramenném trojúhelníku. Určete velikost úhlu oproti základně tohoto t - 4-boký jehlan v2
Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm². Odchylka boční hrany od roviny podstavy je 60 stupňů. - 3b hranol
Vypočítej obsah pláště pravidelného trojbokého hranolu, je-li délka jeho podstavné hrany 6,5 cm a výška 0,2m. - Vrchol 9
Vrchol věže má tvar pravidelného šestibokého jehlanu. Podstavná hrana má délku 1,2 m, výška jehlanu je 1,6 m. Kolik metrů čtverečných plechu je potřeba na pokrytí vrcholu věže, je-li na spoje, překrytí a odpad zapotřebí 15% plechu navíc? - Trojboký hranol 8
Jen dán pravidelný trojboký hranol s hranou podstavy 20dm a výškou 30dm. Vypočítejte objem hranolu a obsah pláště. - Čtyřboký hranol
Vypočítejte povrch a objem čtyřbokého hranolu, který má podstavu tvaru kosodélníka, pokud jeho rozměry jsou: a = 12cm, b = 7cm, Va = 6cm a výška hranolu h = 10cm. - Karnevalova čepice
Kolik dm² ozdobného papíru je potřeba ke zhotovení karnevalových čepic tvaru kužele pro 46 prvňáků, pokud obvod hlavy prvňáčka je 49 cm a výška čepice má být 33 cm. Na záhyby je nutné přidat 3% papíru? - Kužel
Vypočítej objem a povrch kužele, pokud průměr podstavy je d = 14 cm a strana kužele svírá s rovinou podstavy úhel 34°24'. - Dovolená - stan
Ivan a Katka objevili na dovolené pravidelný jehlan, jehož podstavou byl čtverec se stranou 230 m a jehož výška byla rovna poloměru kruhu se stejným obsahem jako podstavný čtverec. Katka označila vrcholy čtverce ABCD. Ivan vyznačil na přímce spojující bod - Věžička 2
Věžička má půdorys tvaru čtverce s délkou strany 5m. Střecha věžičky má tvar pravidelného čtyřbokého jehlanu (bez podstavy) s výškou 8m. Při rekonstrukci se bude střecha pokrývat novými taškami. Na 1 m² se spotřebuje 11 tašek. Na jedné paletě je uskladněn - Dřevená 3
Dřevená deska dlouhá 2,5m má pruřez tvaru pravidelného lichobežníku jehož rovnobežné strany májí delku 1,2dm a 8cm vyška lichobežníka je 3cm. Vypočtete: a) povrch desky pro vypočet spotřeby mořidla b) hmotnost desky je-li hustota dřeva je 600kg/m³ c) koli - Věžička
Věžička má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou délky 0,8 m. Výška věžičky je 1,2 m. Kolik metrů čtverečných je potřeba na její pokrytí, počítáne-li na odpad 10% plechu navíc.
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.
