Příklady na obsah trojúhelníka - strana 28 z 43
Počet nalezených příkladů: 857
- Komolý jehlan
Vypočtěte objem pravidelného šestibokého komolého jehlanu, jestliže je délka hrany dolní podstavy 30 cm, horní podstavy 12 cm a pokud délka boční hrany je 41 cm.
- Vrchol 9
Vrchol věže má tvar pravidelného šestibokého jehlanu. Podstavná hrana má délku 1,2 m, výška jehlanu je 1,6 m. Kolik metrů čtverečných plechu je potřeba na pokrytí vrcholu věže, je-li na spoje, překrytí a odpad zapotřebí 15% plechu navíc?
- 4-boký jehlan v2
Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm². Odchylka boční hrany od roviny podstavy je 60 stupňů.
- 3b hranol
Vypočítej obsah pláště pravidelného trojbokého hranolu, je-li délka jeho podstavné hrany 6,5 cm a výška 0,2m.
- Trojboký hranol 8
Jen dán pravidelný trojboký hranol s hranou podstavy 20dm a výškou 30dm. Vypočítejte objem hranolu a obsah pláště.
- Kužel S2V
Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 cm². Vypočítejte objem tohoto kužele.
- Čtyřboký hranol
Vypočítejte povrch a objem čtyřbokého hranolu, který má podstavu tvaru kosodélníka, pokud jeho rozměry jsou: a = 12cm, b = 7cm, Va = 6cm a výška hranolu h = 10cm.
- Kužel
Vypočítej objem a povrch kužele, pokud průměr podstavy je d = 14 cm a strana kužele svírá s rovinou podstavy úhel 34°24'.
- Dřevená 3
Dřevená deska dlouhá 2,5m má pruřez tvaru pravidelného lichobežníku jehož rovnobežné strany májí delku 1,2dm a 8cm vyška lichobežníka je 3cm. Vypočtete: a) povrch desky pro vypočet spotřeby mořidla b) hmotnost desky je-li hustota dřeva je 600kg/m³ c) koli
- Karnevalova čepice
Kolik dm² ozdobného papíru je potřeba ke zhotovení karnevalových čepic tvaru kužele pro 46 prvňáků, pokud obvod hlavy prvňáčka je 49 cm a výška čepice má být 33 cm. Na záhyby je nutné přidat 3% papíru?
- Dovolená - stan
Ivan a Katka objevili na dovolené pravidelný jehlan, jehož podstavou byl čtverec se stranou 230 m a jehož výška byla rovna poloměru kruhu se stejným obsahem jako podstavný čtverec. Katka označila vrcholy čtverce ABCD. Ivan vyznačil na přímce spojující bod
- Dopravní kužely
Čtyřicet stejných dopravních kuželů s průměrem podstavy d=3dm a výškou v=6dm máme natřít zvenčí oranžovou barvou (bez podstavy). Kolik korun zaplatíme za barvu, pokud na natření 1m² potřebujeme 50 cm³ barvy a 1l barvy stojí 80 Kč?
- Věžička 2
Věžička má půdorys tvaru čtverce s délkou strany 5m. Střecha věžičky má tvar pravidelného čtyřbokého jehlanu (bez podstavy) s výškou 8m. Při rekonstrukci se bude střecha pokrývat novými taškami. Na 1 m² se spotřebuje 11 tašek. Na jedné paletě je uskladněn
- Věžička
Věžička má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou délky 0,8 m. Výška věžičky je 1,2 m. Kolik metrů čtverečných je potřeba na její pokrytí, počítáne-li na odpad 10% plechu navíc.
- Na dvě části
Pravidelný jehlan se čtvercovou podstavou rozřízneme rovinou rovnoběžnou s podstavou na dvě části (viz obrázek). Objem vzniklého menšího jehlanu tvoří 20% objemu původního jehlanu. Podstava vzniklého menšího jehlanu má obsah 10 cm². Určete v centimetrech
- Iglu stan
Stan ve tvaru kužele je vysoký 3 m, průměr jeho podstavy je 3,2 m. a) Stan je vyroben je ze dvou vrstev materiálu. Kolik m² látky třeba na výrobu (včetně podlahy), pokud k minimálnímu množství třeba kvůli odpadu při stříhání přidat 20%? b) Kolik m³ vzduch
- Válec
Válec je třikrát vyšší než je jeho šířka. Délka úhlopříčky válce je 20 cm. Najděte plochu horní části válce.
- Střecha
Střecha věže má tvar pravidelného čtyřbokého jehlanu, jehož podstavná hrana je dlouhá 11 m a boční stěna svírá s podstavou úhel velikosti 57°. Vypočtěte kolik krytiny potřebujeme na pokrytí celé střechy, pokud počítáme s 15% -ním odpadem.
- Jehlan
Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
- Drátěný model
Drátěný model pravidelného šestibokého hranolu s podstavnou hranou délky a = 8 cm má výšku v = 12 cm. Těleso se přelepí papírem, podstavy tmavým a plášť bílým. - Vypočtěte v cm největší možnou přímou vzdálenost dvou vrcholů drátěného hranolu (tloušťku drá
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.