V lichoběžníku

V lichoběžníku ABCD jsou dány základny:
AB = 12cm
CD = 4 cm
A úhlopříčky se protínají pod pravým úhlem. Jaký je obsah tohoto lichoběžníku ABCD?

Správný výsledek:

S =  64 cm2

Řešení:

a=12 cm c=4 cm  a:c=h1:h2  h=h1+h2  h1=a/2=12/2=6 cm h2=c/2=4/2=2 cm  h=h1+h2=6+2=8 cm  S=a+c2 h=12+42 8=64 cm2



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 10 komentářů:
#
Michal
Není mi jasné, proč by muselo platit, že h1 = a/2  nebo h2 = c/2

1 rok  1 Like
#
Dr Math
no h1 = a/2 je pripad kdyz se uhlopricky i puli....

#
Michal
Jenže tady se úhlopříčky nepůlí a ani nejsou stejně dlouhé.

#
Michal
Narýsoval jsem si v interaktivní geometrii lichoběžník ABCD s kolmými úhlopříčkami a základnami 12 a 4 cm. Existuje jich nekonečně mnoho, ale pouze v rovnoramenném by platilo vaše řešení.  Zadání není úplné nebo úloha nejde jednoznačně vyřešit.

#
Dr Math
Ale uloha nema otazku ze ci existuje nekonecne vela kolmych uhlopricek. Uloha sa pyta na obsah a ten muze byt i pre nekonecne vela lichobezniku rovnaky... protoze soucet vysek h1+h2 bude stale konstanta

#
Žák
No to právě nebude, protože průsečík kolmých úhlopříček musí ležet na kružnici sestrojené nad základnou jako jejím průměrem, viz Thaletova kružnice. A u ostatních lichoběžníků než rovnoramenných bude vždy nižší než 8 cm

#
Mathgebra
Nick Michal má pravdu. Vzorec (a+c)/2 . h platí jen tehdy, pokud je h kolmé na základny. Ale dle výpočtu, že h1 = a/2 to ukazuje, že h1 a h2 jsou pouze TĚŽNICE (doprostřed) nikoliv výšky (kolmé). Leda by byly obě kolmé úhlopříčky ze zadání stejně dlouhé, což ale řečeno nebylo.

#
Žák
Lze vypočítat úhlopříčku v lichoběžníku?

#
Lucie
Dobrý den, mám stejnou otázku jako žák, který ji napsal přede mnou. Mám za úkol do matematiky napsat délku úhlopříčky. Lze to vypočítat? Popřípadě jak? (Ještě jsme nebrali cos, sin, ...)
Předem moc děkuji za odpověď.

#
Zs Ucitel
no zkuste pyt. vetu. Ak se neco protina v pravem uhlu... Pak Pytagorova veta pomuze...

sin cos vedy ked znam uhly... (najma jine ako 90 st.)

avatar









Tipy na související online kalkulačky
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • V lichoběžníku 3
    stredova sumernost V lichoběžníku ABCD jsou dány délky základen |AB| = 12 cm, |CD| = 8 cm. Bod S je průsečík úhlopříček, pro který platí |AS| = 6 cm. Vypočítej délku celé úhlopříčky AC.
  • Z bodu 2
    ssa Z bodu na kružnici o průměru 8 cm jsou vedeny dvě shodné tětivy, které svírají úhel 60°. Vypočítej délku těchto tětiv.
  • Lichoběžník IV
    lichobeznik2 V lichoběžníku ABCD (AB||CD) platí |AB| = 15cm, |CD| = 7cm, |AC| = 12cm, AC je kolmé na BC. Jaký obsah má lichoběžník ABCD?
  • Lichoběžník MO
    right_trapezium Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
  • Lichoběžník - úhlopříčky
    licho Lichoběžník má délku úhlopříčky AC přeseknutu úhlopříčkou BD v poměru 2:1. Trojúhelník vytvořen body A, průnikem úhlopříček (S) a bodem D má obsah 164 cm2. (Tomuto trojúhelníku také patří strana úhlopříčky AC a je 2x větší než její druhá část.) Jaký je o
  • Z8-I-2 MO 2017
    klm1 V ostroúhlém trojúhelníku KLM má úhel KLM velikost 68°. Bod V je průsečíkem výšek a P je patou výšky na stranu LM. Osa úhlu P V M je rovnoběžná se stranou KM. Porovnejte velikosti úhlů MKL a LMK.
  • MO Z9–I–2 - 2017
    trapezium_3 V lichoběžníku VODY je VO delší základnou a průsečík úhlopříček K dělí úsečku VD v poměru 3:2 . Obsah trojúhelníku KOV je 13,5 cm2. Urči obsah celého lichoběžníku.
  • Vypočítej 3
    rectangle_5 Vypočítej obsah obdélníku, ve kterém znám velikost úhlopříček je 10 cm.
  • Tětiva
    Tetiva Strana trojúhelníku vepsaného do kružnice je tětivou procházející jejím středem. Jakou velikost mají vnitřní úhly trojúhelníku, pokud jeden z nich má 40°?
  • Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  • Trojúhelník
    thales_2 Narysuj pravoúhlý trojúhelník ABC, ve kterém platí: |AB| = 5 cm, |BC| = 3 cm, |AC| = 4 cm. Zostroj Thaletovu kružnici nad přeponou trojúhelníku ABC.
  • Pravoúhlý lichoběžník 5
    trapezium_right_1 Pravoúhlý lichoběžník ABCD, jehož rameno AD je kolmé na základny AB a CD, má obsah 15cm čtverečních. Základny mají délky AB=6cm, CD=4cm. Vypočítej délku úhlopříčky AC.
  • Kvádr
    kvadr Najděte kvádr, který má povrch stejný jako objem.
  • Lichoběžník
    lichobeznik_6 V rovnoramenného lichoběžníku KLMN je průsečík úhlopříček označen písmenem S. Vypočítejte obsah lichoběžníku, pokud /KS/: /SM/ = 2: 1 a obsah trojúhelníku KSN je 14 cm2.
  • Parabolická
    ParabolicVolume Parabolická úseč má základnu a= 4 cm a výšku v= 6 cm. Vypočítejte objem tělesa, které vznikne rotací této úseče a) kolem své základny b) kolem své osy. Předem děkuji za řešení.
  • Množina bodů Z7–I–5.
    triangles_12 Je dán trojúhelník ABC se stranami /AB/=3 cm, /BC/= 10 cm a úhlem ABC = 120°. Narýsujte všechny body X tak, aby platilo, že trojúhelník BCX je rovnoramenný a současně trojúhelník ABX je rovnoramenný se základnou AB.
  • Z8 – I – 3 MO 2018
    kvietok2 Petr narýsoval pravidelný šestiúhelník, jehož vrcholy ležely na kružnici délky 16 cm. Potom z každého vrcholu tohoto šestiúhelníku narýsoval kružnici, která procházela dvěma sousedními vrcholy. Vznikl tak útvar jako na následujícím obrázku. Určete obvod v