Koľko 33

Koľko štvorciferných kodov na zámku na bicykel môžeme vytvoriť z cifier 0,1,2,3,4,5,6,7,8,9. Ak platí, že cifry sa nemôžu opakovať.

Výsledok

n =  5040

Riešenie:

n=10 9 8 7=5040n = 10 \cdot \ 9 \cdot \ 8 \cdot \ 7 = 5040



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlete. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Tipy na súvisiace online kalkulačky
Pozrite aj našu kalkulačku permutácií.
Pozrite aj našu kalkulačku variácií.
Chceš si dať zrátať kombinačné číslo?

Ďaľšie podobné príklady a úlohy:

  1. PIN - kódy
    pin Koľko päťciferných PIN - kódov môžeme vytvoriť s použitím párnych číslic?
  2. Päťciferné 2
    numbers_48 Koľko päťcifernych čísel môžeme napísať z čísel 0,3,4,5,7 aby všetky boli deliť len 10 ak sa číslice môžu opakovať
  3. Tréningy
    tenis V tabuľke je harmonogram sobotňajších tenisových tréningov mladších žiakov počas zimnej halovej sezóny. Pred začiatkom letnej sezóny sa pripravuje nový harmonogram tréningov. Tomáš Kučera bude môcť trénovať len predpoludním, sestry Kováčové budú musieť tré
  4. Koľko 41
    numbers Koľko môžeš vytvoriť päťciferných čísel z číslic 1,2,3,4,5,6, ak 1 a 2 musia vždy byť vedľa seba? Číslice sa nemôžu opakovať.
  5. Elenka
    koralky_1 Elenka má štyri korálky: žltú, dve ružové a zelenú. Koľko rôznofarebných náhrdelníkov môže vytvoriť.
  6. Cifry 4
    numbers2_18 Koľko je prirodzených čísel n väčších ako 4000, ktoré sú utvorené z cifier 0,1,3,7,9 pričom sa cifry neopakujú , b) Ako sa zmení počet prirodzených čísel tak, aby boli menšie ako 4000 a cifry sa môžu opakovať ?
  7. Poháry
    glasses_1 Mám 7 pohárov: 1 2 3 4 5 6 7. Koľko je možnosti postavenia pohárov ak 1 a 2 sú stále vedľa seba a môžu sa navzájom prehodiť?
  8. Koľko 43
    numbs Koľko trojciferných čísel sa nezmení, ak vymeníme číslicu na mieste stoviek s číslicou na mieste jednotiek?
  9. Dresy
    futball_ball_3 Tomáš má štyri futbalové dresy: červený, modrý, biely a zelený. Koľkými spôsobmi ich môže Tomáš poukladať na policu vedľa seba tak, aby červený a modrý dres boli susedné?
  10. Rozvrh
    rozvrh V škole sa vyučuje 12 rôznych predmetov a každý predmet sa vyučuje najviac hodinu denne. Koľkými spôsobmi možno zostaviť rozvrh hodín na jeden deň, ak sa v ten deň vyučuje 5 rôznych predmetov?
  11. Hračky
    toys 3 deti si z krabice vytiahli 12 rôznych hračiek. Koľkými spôsobmi sa o ne môžu podeliť tak, aby každé malo aspoň jednu hračku?
  12. Olympiáda
    olympics Koľkými spôsobmi sa môžu umiestniť šiesti pretekári na medailových pozíciách na olympiáde? Na farbe kovu záleží.
  13. Vrecko
    kamene V nepriehladnom vrecku sú červené, biele, žlté, modré žetóny, ťaháme 3x po jednom žetóne a opäť ho vrátime, napíš všetky možnosti
  14. Filatelisti
    znamky Koľkými rôznymi spôsobmi môžu členovia 7 členného filatelistického krúžku zvoliť zo svojich radov tajomníka a hospodára?
  15. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  16. Variácie
    pantagram Určte počet prvkov ak je počet variacií štvrtej triedy bez opakovania 38-krát väčší ako počet variacií tretej triedy bez opakovania.
  17. Koza 4
    bielakoza Slnko vychádza na východe od prístrešku a zapadá na západe. Koze by sa zišlo trochu tieňa, kde a aký druh stromu treba zasadiť , aby ho neobjedla?