V akom

V akom pomere sú priemery týchto mincí:
10 centov-priemer 19,75mm
20 centov-priemer 22,25mm
50 centov-priemer 24,25mm

Výsledok

x = (Správna odpoveď je: 79/89/97) Nesprávne

Riešenie:

x=19.75:22.25:24.25 x=1975:2225:2425  1975=5279 2225=5289 2425=5297 NSD(1975,2225,2425)=52=25  d=NSD(1975,2225,2425)=25 x=79:89:97



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 0 komentárov:
avatar




Tipy na súvisiace online kalkulačky
Chceš si vypočítať najväčší spoločný deliteľ dvoch alebo viacerých čísel?
Potrebujete pomôcť spočítať, vykrátiť či vynásobiť zlomky? Skúste našu zlomkovú kalkulačku.
Vyskúšajte našu kalkulačka na prepočet pomeru.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2

Ďaľšie podobné príklady a úlohy:

  • Euromince
    mince_1 Pri platení používame euromince, ktorých priemery sú nasledovné: 10-centová má priemer 19,75 mm, 20-centová má priemer 22,25 mm a 50-centová má priemer 24,25 mm. Zisti v akom pomere sú priemery týchto mincí.
  • Snehuliak 2
    snowman_1 Na medailu, ktorá má tvar kruhu s priemerom 18 cm, je narýsovaný snehuliak tak, že sú splnené nasledujúce požiadavky: 1.snehuliak je zložený z troch kruhov, 2.mezera nad snehuliakom je rovnaká ako pod ním, 3.priemery všetkých kruhov vyjadrené v cm sú cel
  • MO B 2019 - uloha 2
    olympics Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
  • Snehuliak
    snehuliak_1 V kruhu o priemere 50 cm sú narysované 3 kruhy / ako snehuliak / pre ktoré platí: priemery sú celočíselné, priemer každého väčšieho kruhu je o 3 cm väčší ako priemer predchádzajúceho kruhu. Urči výšku snehuliaka, tak aby bol najvyšší.
  • Kruhy
    two_circles Obsahy dvoch kruhov sú v pomere 2:14. Väčší kruh má priemer 14. Vypočítajte polomer menšieho kruhu.
  • Traja podnikatelia
    penize Traja podnikatelia sa rozhodnú založiť vlastnú spoločnosť. Súhlasia, že rozdelia ročné zisky v rovnakom pomere ako ich počiatočné investície. Investujú 50 000, 75 000 a 25 000 eur. Zisk, ktorý spoločnosť dosiahla v prvom roku, je 60000 eur. (1) Pomer poči
  • Kruh je
    vysek_1 Kruh je rozdelený na 3 výseky. Výsek A zaberá 1/4 plochy, výsek B zaberá 1/3 plochy. Akú časť zaberá výsek C? V akom pomere sú plochy A: B: C?
  • MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozobera
  • Zadné
    tractor_9 Zadné kolesá traktora majú priemer 1,25 m a predné kolesá majú priemer 55cm. V akom pomere sú počty jeho otáčok? Koľkokrát sa otočí každé koleso na dráhe 1,5 km?
  • MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane naj
  • MO Z7–I–3 2017
    zoo_2 Zoologická záhrada ponúkala školským skupinám výhodné vstupné: každý piaty žiak dostáva vstupenku zdarma. Pán učiteľ 6.A spočítal, že ak kúpi vstupné deťom zo svojej triedy, ušetrí za štyri vstupenky a zaplatí 19,95 €. Pani učiteľka 6.B mu navrhla, nech k
  • MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  • Babka a vnučka
    barunka Babka a jej vnučka Barunka majú narodeniny v rovnaký deň. Pri šiestich po sebe idúcich oslavách narodenin bol babkin vek vždy deliteľný vekom Barunky. Koľké narodeniny oslavovala babka na poslednej z týchto šiestich osláv? Babka nema viac ako 100 rokov.
  • Traja 18
    gulky_9 Traja kamaráti mali na začiatku hry guľôčky v pomere 2:7:4. Mohli mať na konci hry rovnaký počet guľôčok? Zapíšte 0, ak nie, alebo zapíšte minimálny počet guľôčok ktoré spolu mali.
  • Polomer
    circle_basen_1 Obsahy dvoch kruhov sú v pomere 4:9 . Väčší kruh má priemer 12 cm. Vypočítajte polomer menšieho kruhu.
  • Krokovanie
    rectangle_8 Záhrada je dlhá 90 m. Aká najmenšia môže byť jej šírka, ak sa dá prejsť (obvod) krokmi 80 cm alebo 50 cm?
  • Pizza
    pizza_2 Pizza s priemerom 50 cm má hmotnosť 559 g. Aký priemer bude mať pizza o hmotnosti 855 g, ak vznikla z rovnakého cesta (rovnaká hrúbka, rozvaľkanie) a rovnako vyzdobená?