MO C-I-1 2019

Nájdite všetky štvorciferné čísla abcd s ciferným súčtom 12 také, že ab-cd=1

Správny výsledok:

x1 =  2019

Riešenie:

d0=2019=1 s1=2+0+1+9=12  x1=2019



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 8 komentárov:
#
Anonym
To má len jedno riešenie?

#
Dr Math
ine sme nenasli... aj logicky... ciferny sucet 12 je dost velky... a je 334 moznosti abcd ako ho dosiahnut. Ide o to otestovat rozdiel dvoch dvojcifernych po sebe iducich cisel ci ciferny sucet je 12. a aj c nesmie byt nula. nesmu sa opakovat cislice apod.

#
Matej
Ako ste na to prišli?

#
Jano R
Čo znamená v tej rovnici *, a čo 10?
A*10+B-C*10-D=1

#
Zak
* je krat, symbol nasobenia... neviem ako to vysvetlit, ale snad sa to uz 30 rokov uci na skolach, ze krat s na pocitaci pise ako hviezdicka a desatinna ciarka ako bodka.

#
Milo
Aký je dôkaz že existuje iba jedno?

11 mesiacov  1 Like
#
Žiak
Ale v tej úlohe (čo je na olympiáde) je ab-cd a nad nimi je čiara. Neznamená to náhodou ciferný súčet? Ak hej tak by vám to nesedelo lebo 2+0=2 ; 1+9 =10 a ten rozdiel nebude potom 1

avatar









Tipy na súvisiace online kalkulačky
Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:


 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1

Ďaľšie podobné príklady a úlohy:

  • Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  • Štvorciferné
    numbers_1 Nájdi také štvorciferné číslo, ktorého štvornásobok napísaný odzadu, je to isté číslo.
  • Vo vrecúšku
    dices2 Vo vrecúšku sú žetóny na ktorých sú čísla od 1 po 25. Aká je pravdepodobnosť, že sme vybrali číslo s ciferným súčtom 6?
  • Z9–I–1 2018 čísla
    hyperbola_1 Nájdite všetky kladné celé čísla x a y, pre ktoré platí: 1/x + 1/y = 1/4 .
  • MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  • MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  • C – I – 6 MO 2018
    numbers_49 Nájdite všetky trojciferné čísla n s tromi rôznymi nenulovými ciframi, ktoré sú deliteľné súčtom všetkých troch dvojciferných čísel, ktoré dostaneme, keď v pôvodnom čísle vyškrtneme vždy jednu cifru.
  • PT lichoběžník
    lichob_2_2 Je daný lichoběžník ABCD (AB||CD, AB kolmé na AD). Vypocitaj jeho obvod, ak |AB|=20cm, |CD|=15cm, |AD|=12cm. Pytagorova veta
  • MO 2019 Z8–I–4
    olympics_1 Pre päticu celých čísel platí, že keď k prvému pripočítame jednotku, druhé umocníme na druhú, od tretieho odčítame trojku, štvrté vynásobíme štyrmi a piate vydelíme piatimi, dostaneme zakaždým ten istý výsledok. Nájdite všetky také pätice čísel, ktorých s
  • Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné
  • Štvorciferné čísla
    numberline Nájdite štvorciferné čísla, kde všetky číslice sú rôzne. Pre čísla platí, že súčet tretej a štvrtej číslice je dvakrát väčší ako súčet prvých dvoch číslic a súčet prvej a štvrtej číslice je rovný súčtu druhej a tretej číslice. Číslice 0 nesmie byt na prve
  • MO Z8-I-1 2018
    age_6 Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  • Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné č
  • Také tretinky
    lichobeznik_mo_z8_3 Je daný lichobežníku ABCD s rovnobežnými stranami AB a CD pre bod E strany AB plati, že úsečka DE že delí lichobežník na dve časti s rovnakým obsahom. Spočítaj dĺžku úsečky AE.
  • MO-I-Z6
    stvorec_4 Štvorec so stranou 4 cm je rozdelený na štvorčeky so stranou 1 cm ako na obrázku. Rozdeľte štvorec pozdĺž vyznačených čiar na dva útvary s obvodom 16 cm. Nájdite aspoň tri rôzne riešenia (tzn. také tri riešenia, aby žiadny útvar jedného riešenia nebol zho
  • Z9 – I – 1 MO 2019
    oriesky Ondro, Maťo a Kubo sa vracajú zo zbierania orechov, dokopy ich majú 120. Maťo sa sťažuje, že Ondro má ako vždy najviac. Otec prikáže Ondrovi, aby prisypal zo svojho Maťovi tak, aby mu počet orechov zdvojnásobil. Teraz sa sťažuje Kubo, že najviac má Maťo.
  • MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami.