MO 2019 Z5–I–3 Dukáty

Pán kráľ rozdával svojim synom dukáty. Najstaršiemu synovi dal určitý počet dukátov, mladšiemu dal o jeden dukát menej, ďalšiemu dal opäť o jeden dukát menej a takto postupoval až k najmladšiemu. Potom sa vrátil k najstaršiemu synovi, dal mu
o jeden dukát menej ako pred chvíľou najmladšiemu a rovnakým spôsobom ako v prvom kole rozdával ďalej. V tomto kole vyšiel na najmladšieho syna jeden dukát. Najstarší syn dostal celkom 21 dukátov.

Určte, koľko mal kráľ synov a koľko im celkom rozdal dukátov.

Správny výsledok:

n =  7
s =  105

Riešenie:

 n+2n=21  n+2 n=21  3n=21  n=7
a1=7+14=21 a2=6+13=19 a3=5+12=17 a4=4+11=15 a5=3+10=13 a6=2+9=11 a7=1+8=9  s=a1+a2+a3+a4+a5+a6+a7=21+19+17+15+13+11+9=105



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 10 komentárov:
#
Linda
aj tak tomu nerozumiem, čo je "n" a čo je "s". Ak má sedem synov, tak to predsa nevychádza. Či?!
Nemôžete mi to nakresliť koľko dostal v ktorom kole dukátov a koľko bolo vlastne tých kôl?

1 rok  2 Likes
#
Linda
podľa zadania vychádza, že boli tri kolá. A na konci tretieho kola má mať SPOLU 21 dukátov. Podľa vášho riešenia mi to nevychádza. Alebo ako to vlastne je.

#
Dr Math
no vidite; kola boli len dve (nepise sa v zadani ze viacej bolo)... princov bolo 7. Prvy dostal 14+7 = 21 ... dalsi 13+6 = 19 atd...

#
Linda
Ďakujem.

#
Linda
a ako vlastne prídem na to, že mal sedem synov. Ja som síce počítala 21/3, ale neviem prečo ma napadla tá trojka.

#
Dr Math
skuste ist na to odzadu... n-ty dostane 1 dukat, (n-1) syn 2 dukaty ( vsimnite si ze sucet poradia a poctu dokatov je vzdy n+1)... az prvy syn n-dukatov. ak ideme este dozadu o kolo tak prvy syn dostane v predoslom kole 2n dukatov, este v dalsom 3n dukatov atd. tj. kazdym kolom o n dukatov viacej by dostal.

cize 1+2 druhe kolo rozdavania dukatov 2n+n = 3n = 21 dukatov. Rovnicu vyriesime a mame n=7

Keby rozdava 3 kola, tak prvy dostane 42 dukatov = 7+14+21(to je len ukazka)

1 rok  1 Like
#
Žiak
Veľká vďaka ????

#
Linda
Takže jednoducho iba postupne skúšať s koľkými synmi to výjde. Lebo rovnice sme sa ešte neučili.

#
Dr Math
ale rovnicu n+2n = 21 snad aj v stvrrtej triede date...

#
Matematik
A mame tu oficialne riesenie  - konstatujem ze sme sa nepomylili:

Nápad. Koľko dukátov by dostal najstarší syn, ak by kráľ rovnakým spôsobom rozdával napr. štyrom synom?

Riešenie. Pre konkrétny počet synov si možno kráľov spôsob rozdávania dukátov názorne vyskúšať. Stačí postupovať odzadu: najmladší v druhom kole dostal jeden dukát, druhý najmladší dva dukáty atď. Napr. pre dvoch, troch, resp. štyroch synov by
počty dukátov v jednotlivých kolách vyzerali nasledovne (zoradené zhora nadol podľa kôl, zľava doprava podľa veku):
4 3
2 1
6 5 4
3 2 1
8 7 6 5
4 3 2 1

Najstarší syn by v prvom prípade dostal 6, v druhom prípade 9, resp. v treťom prípade 12 dukátov. Týmto spôsobom možno postupne nájsť situáciu, keď najstarší syn dostal 21 dukátov:
14 13 12 11 10 9 8
7 6 5 4 3 2 1

Teda kráľ mal 7 synov a celkom im rozdal 105 dukátov.

Poznámky. Namiesto skúšania si možno všimnúť, že zo zadania vyplýva nasledujúce:

najstarší syn v druhom kole dostane práve toľko dukátov, koľko je synov, a v prvom kole dvojnásobok, celkom teda trojnásobok počtu synov. Aby tento počet bol rovný 21, musí byť 7 synov a celkový počet dukátov 1 + 2 + · · · + 14 = 105.

Súčet rozdaných dukátov možno určiť rôzne, napr. nasledujúcou skratkou:
(1 + 14) + (2 + 13) + · · · + (7 + 8) = 7 · 15 = 105.

avatar









Ďaľšie podobné príklady a úlohy:

  • Pážata MO Z6-I-4
    coins Raz si kráľ zavolal všetky svoje pážatá a postavil ich do radu. Prvému pážaťu dal určitý počet dukátov, druhému dal o dva dukáty menej, tretiemu opäť o dva dukáty menej a tak ďalej. Keď došiel k poslednému pážaťu, dal mu príslušný počet dukátov, otočil sa
  • Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
  • Rad
    fib Vašou úlohou je vyjadriť súčet nasledujúceho aritmetického radu pre n = 14: S(n) = 11 + 13 + 15 + 17 + ... + 2n+9 + 2n+11
  • Marienka - mo
    cukriky_4 Marienka rozmiestni do vrcholov pravidelného osemuholníka rôzne počty od jedného po osem cukríkov. Peter si potom môže vybrať, ktoré tri kôpky cukríkov dá Marienke, ostatné si ponechá. Jedinou podmienkou je, že tieto tri kôpky ležia vo vrcholoch rovnorame
  • MO Z9–I–1 2017
    age_4 Vekový priemer všetkých ľudí na oslave bol rovný počtu prítomných. Po odchode jednej osoby, ktorej bolo 29 rokov, bol vekový priemer zase rovný počtu prítomných. Koľko ľudí bolo pôvodne na oslave?
  • Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  • Z7-1-6 MO 2017
    tanks_1 Vodník Chaluha nalieval hmlu do rozmanitých rôzne veľkých nádob ktoré si starostlivo zoradil na polici. Pri nalievaní postupoval postupne z jednej strany žiadnu nádobu nepreskakoval. Do každej nádoby sa vojde aspoň deciliter hmly. Keby nalieval hmlu sedem
  • MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
  • Číselná os
    osa V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2
  • Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  • Roboti Z7
    1-robot V škole pre robotov do jednej triedy chodí dvadsať robotov Robertov, ktorí sú očíslovaní Robert 1 až Robert 20. V triede je práve napätá atmosféra, rozprávajú sa spolu iba niektorí roboti. Roboti s nepárnym číslom sa nerozprávajú s robotmi s párnym číslom
  • Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  • Ovce
    ships Pastier pásol ovce. Turisti sa ho pýtali, koľko ich má. Pastier povedal: „ Je ich menej ako 500. Keby som ich zoradil do štvorradu tri by mi ostali. Keby do päťradu ostali by mi štyri a ak do šesť radu, ostane ich 5. Môžem ich však zoradiť do sedem radu.
  • Prázdniny
    ndr Zo 35 žiakov triedy ich bolo o prázdninách 7 v Nemecku a práve toľko v Taliansku. Rakúsko navštívilo 5 žiakov. V žiadnej z týchto krajín nebol 21 žiakov, všetky tri navštívil 1 žiak. V Taliansku aj Rakúsku boli 2 žiaci, v Rakúsku a Nemecku bol 1 žiak. Koľ
  • Priemer
    integrales Ak je priemer súboru dát parametra 5, 17, 19, 14, 15, 17, 7, 11, 16, 19, 5, 5, 10, 8, 13, 14, 4, 2, 17, 11, x je -91,74, aká je hodnota x?
  • Z6–I–1 MO 2018
    hrusky_8 Ivan a Mirka sa delili o hrušky v mise. Ivan si vždy berie dve hrušky a Mirka polovicu toho, čo v mise ostáva. Takto postupne odoberali Ivan, Mirka, Ivan, Mirka a nakoniec Ivan, ktorý vzal posledné dve hrušky. Určite, kto mal nakoniec viac hrušiek a o koľ
  • Kvíz 4
    test_1 V súťaži odpovedá 10 súťažiacich na päť otázok, v každom kole na jednu otázku. Kto odpovie správne, získa v danom kole toľko bodov, koľko súťažiacich odpovedalo nesprávne. Jedna zo súťažiacich po súťaži povedala : Celkovo sme získali 116 bodov, z toho ja