Kolmé 3D vektory
Najděte vektor a = (2, y, z) tak, že a⊥b a ⊥ c kde b = (-1, 4, 2) a c = (3, -3, -1)
Správná odpověď:

Tipy na související online kalkulačky
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Umístěte vektor
Vektor AB, jestliže A (3, -1), B (5,3) umístěte do bodu C (1,3) tak že, AB = CO
- Kolmá a rovnoběžná
Potřebuji matematickou pomoc v tomto problému: jsou dány dva trojrozměrné vektory a = (- 5, 5 3) b = (- 2, -4, -5) Rozložte vektor b na b = v + w, kde v je rovnoběžná s a a w je kolmá na a. Najděte souřadnice vektorů v a w.
- Jsou dány
Jsou dány body A(1,2), B(4,-2) a C(3,-2) . Najděte parametrické rovnice přímky, která: a) Prochází bodem C a je rovnoběžná s přímkou AB, b) Prochází bodem C a je kolmá k přímce AB.
- Směrový vektor
A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD
- Lichoběžník 5341
Lichoběžník, kde AB je rovnoběžná s CD, má úhel A : úhel D = 4 : 5, úhel B = 3x-15 a úhel C = 4x+20. Najděte úhel A, B, C a D.
- Souřadnice 73044
Najděte bod P na úsečce AB tak, že |AP| = r |AB| . Souřadnice koncových bodů: A = (−2, 0, 1), B = (10, 8, 5), poměr r = 1/4.
- RR trojuhelník
Je dán rovnoramenný trojúhelník ABC, kde AB = AC. Obvod je 64 cm a výška na základnu je 24 cm. Najděte obsah tohoto rovnoramenného trojúhelníku
- Čtyřciferná 55481
Najděte všechna čtyřciferná čísla abcd, pro která platí: abcd = 20 . ab + 16 . cd, kde ab, cd jsou dvouciferné čísla z číslic a, b, c, d.
- Trojúhelník 32183
V rovině je dán trojúhelník ABC. A(-3,5), B(2,3), C(-1,-2) zapište souřadnice vektorů u, v, w pokud u=AB, v=AC, w=BC. Zapište souřadnice středů úseček SAB(. .), SAC(. .. ), SBC(. .. )
- Souměrnost
Najděte obraz A´ bodu A[1,2] v osové souměrnosti s osou p: x=-1+3t, y=-2+t (t = jsou realná čísla)
- Určete 49
Určete bod C tak, aby trojúhelník ABC byl pravoúhlý a rovnoramenný s přeponou AB, kde A[4,-6], B[-2,10]
- Vektory - základní operace
Dáno jsou body A [-11; 14] B [-1; -18] C[10; -20] a D[19; 15] a. Určitě souřadnice vektorů u = AB v = CD s = DB b. Vypočítejte vektorový součet u + v c. Vypočítejte rozdíl vektorů u-v d. Určitě souřadnice vektoru w = -4.u
- Určete 19
Určete neznámou souřadnici vektoru tak, aby vektory byly kolineární: e=(7, -2), f = (-2, f2) c= ( -3/7, c2), d=(-4,0)
- Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- MO Z9 2019 domace kolo
V trojúhelníku ABC leží bod P ve třetině úsečky AB blíže bodu A, bod R je ve třetině úsečky P B blíže bodu P a bod Q leží na úsečce BC tak, že úhly P CB a RQB jsou shodné. Určete poměr obsahů trojúhelníků ABC a PQC.
- Předpokládejme 81212
Předpokládejme, že 4+7i je řešením 5z2+Az+B=0, kde A, B∈R. Najděte A a B.
- Najděte
Najděte vektor v4 kolmý na vektory v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) a v3 = (0, 0, 1, 1)