Strom 2

Strom byl vysoký 35 m. Strom se zlomil ve výšce 10 m nad zemí. Vršek ale neodpadl, jen se vyvrátil na zem. Jak daleko od paty stromu ležela jeho špička?

Výsledek

x =  22.913 m

Řešení:

x=(3510)2102=22.913 mx=\sqrt{ (35-10)^{ 2 }-10^{ 2 } }=22.913 \ \text{m}



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby, které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Tipy na související online kalkulačky
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:

Další podobné příklady a úkoly:

  1. Strom
    vichrica Při vichřici se zlomil strom ve výšce 3 metrů. Jeho vrchol dopadl 4,5 m od stromu. Jak vysoký byl strom?
  2. Štít domu
    domcek_1 Jaký vysoký je štít domu tvaru rovnoramenného trojúhelníku se základnou délky 8 metrů a ramenem dlouhým 5 metrů?
  3. Vichřice
    stromy_16 Vichřice nalomila svisle rostoucí smrk ve výšce 8 metrů nd zemí. Vrchol dopadl na zem 6 metrů od paty smrku. Určete původní výšku smrku.
  4. Televizní vysílač
    vysilac Televizní vysílač je ukotven ve výšce 44 metrů čtyřmi lany. Každé lano je uchyceno ve vzdálenosti 55 metrů od paty vysílače. Vypočítejte, kolik metrů lana bylo použito při stavbě vysílače. Na každé uchycení je zapotřebí připočítat 0,5 metru lana navíc.
  5. Stolař
    trig_2 Stolař opřel dvoumetrovou kuchyňskou desku o zeď. Dolní hrana je od zdi vzdálena 0.75m. V jaké výšce od země je opřena horní hrana desky?
  6. Štafle
    rebrik Nerozložený dvojitý žebřík (štafle ve tvaru A) má délku 10 m. Do jaké výšky bude dosahovat, když si malíř roztáhl obě části žebříku a zajistil tak, že na zemi budou obě části žebříku od sebe vzdáleny 12 m.
  7. Schodiště
    schody Schodiště má celkem 20 schodů. Každý schod má délku 22 cm a výšku 15 cm. Vypočítej délku zábradlí, které je u schodište, jestliže na nahoře i dole přesahuje o 10 cm.
  8. Trojúhelník PQR
    solving-right-triangles V pravoúhlém trojúhelníku PQR je odvěsna PQ rozdělena bodem X na dva úseky, z nichž delší má délku 25cm. Druhá odvěsna PR má délku 16 cm. Délka přepony RX je 20 cm. Vypočtěte délku p strany RQ. Výsledek zaokrouhli na 2 desetinná místa. Jednotky "cm"
  9. Silnice 8
    road_2 Silnice má stoupání 8%. O kolik metrů vystoupá silnice na vodorovné vzdálenosti 400m?
  10. Kruhový kužel
    cone_9 Poloměr základny pravoúhlého kruhového kužele je 14 palců a jeho výška je 18 palců. Jaká je velikost boční strany?
  11. Dvojitý žebrík 2
    rr_rebrik Dvojitý žebrík má ramena dlouhá 3 metry. Do jaké výšky bude dosahovat horní konec žebíku, jestliže dolní konce jsou od sebe vzdáleny 1,8 metru?
  12. Žebřík 2
    rebrik_2 Žebřík má délku 3,5 metru. Je opřen o zeď tak, že jeho dolní konec je ode zdi vzdálen 2 metry. Urči, do jaké výšky dosahuje žebřík.
  13. Dvojitý žebřík
    dvojak Dvojitý žebřík je 8,5m dlouhý. Je postaven tak že jeho dolní konce jsou od sebe vzdáleny 3,5m. Do jaké výšky dosahuje horní konec žebříku?
  14. Tětiva
    Tetiva_1 Na kružnici k(S;r=8cm) jsou různé body A, B spojené úsečkou /AB/=12cm. Střed AB označ S´. Vypočítej /SS´/. Proveď náčrtek.
  15. Společná tětiva
    chord2 Dvě kružnice s poloměry 17 cm a 20 cm se protínají ve dvou bodech. Jejich společná tětiva dlouhá 27 cm. Jaká je vzdálenost středů těchto kružnic?
  16. Velikost odvěsny
    rr_right_triangle Jakou velikost má odvěsna rovnoramenného pravoúhlého trojúhelníka s přeponou délky 8 cm? Výpočet a postup. ..
  17. Rozhodni
    decide Rozhodni, zda trojice čísel udává strany pravoúhlého trojúhelníku: 26,24,10.