Šestiúhelník nepravidelný

Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF GJIH má obvod 60 cm a obdélník HIJD má obvod 28 cm.


Vaše odpověď:

cm2


Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 2 komentáře:
#
Mo-radce
Nápověda. Dokážete určit délku některé úsečky, aniž byste k tomu použili více než jeden zadaný rozměr?

Řešení.

Zjistíme rozměry čtverce EF GD a obdélníku HIJD, abychom stanovili jejich obsahy. Rozdíl těchto obsahů představuje žádaný obsah šestiúhelníku EFGJIH. Zadaný obvod šestiúhelníku EFGJIH je roven obvodu čtverce EFGD, neboť |JI| = |DH| a |HI| = |DJ|. Strana GD má tedy velikost 60 : 4 = 15 (cm). Podobně zadaný obvod šestiúhelníku ABCGF E je roven obvodu čtverce ABCD, velikost strany CD je tudíž 96 : 4 = 24 (cm). Rozdíl délek stran těchto dvou čtverců je roven délce úsečky GC, která je dle zadání rovna délce úsečky DJ:
|DJ| = |GC| = 24 − 15 = 9 (cm).

Pomocí známého obvodu obdélníku HIJD a délky strany DJ stanovíme i druhý rozměr tohoto obdélníku:
|JI| = (28 − 2 · 9) : 2 = 5 (cm).

Nyní máme všechny údaje potřebné ke stanovení obsahů čtverce EF GD a obdélníku HIJD:
S(EFGD) = 15 · 15 = 225 cm2
S(HIJD) = 9 · 5 = 45 cm2

Hledaný obsah šestiúhelníku tedy je S (EFGJIH) = 225 − 45 = 180 cm2.

5 let  1 Like
#
Peter2
Kod prikladu je Z6–I–3

avatar





 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1