Pan Cuketa

Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n jako počet řešení.

Správná odpověď:

n =  2

Postup správného řešení:

n=2=2



Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 2 komentáře:
#
Mo-radca
Nápověda. Uvědomte si, že čtverce nemusí mít stejné rozměry.

Možné řešení. Obvod 28 = 2 · 14 metrů lze pomocí kladných celých čísel vyjádřit pouze několika málo způsoby. Postupně všechny probereme a zjistíme, zda lze odpovídající záhon rozdělit na čtyři čtverce s celočíselnými rozměry:

• 28 = 2 · (13 + 1), v takovém případě potřebujeme 13 čtverců
• 28 = 2 · (12 + 2), v takovém případě potřebujeme nejméně 6 čtverců
• 28 = 2 · (11 + 3), v takovém případě potřebujeme nejméně 6 čtverců
• 28 = 2 · (10 + 4), v takovém případě stačí 4 čtverce
• 28 = 2 · (9 + 5), v takovém případě potřebujeme nejméně 6 čtverců
• 28 = 2 · (8 + 6), v takovém případě stačí 4 čtverce
• 28 = 2 · (7 + 7), v takovém případě by byl záhon čtvercový a ne obdélníkový.

Zahrada mohla mít rozměry 10 × 4 nebo 8 × 6 metrů.

Jiné řešení. Uvažujme, jak lze složit jeden obdélník ze čtyř čtverců (obecně různých celočíselných rozměrů). To lze udělat pouze následujícími způsoby:

Pokud velikost strany nejmenšího čtverce v metrech označíme a, potom obvod obdélníku v jednotlivých případech je:

• 2 · (4a + a) = 10a, což není rovno 28 pro žádné celé a.
• 2 ·(5a + 2a) = 14a, což je rovno 28, právě když a = 2; obdélník má v takovém případě rozměry 10 × 4 metrů.
• 2 · (5a + 3a) = 16a, což není rovno 28 pro žádné celé a.
• 2 ·(4a + 3a) = 14a, což je rovno 28, právě když a = 2; obdélník má v takovém případě rozměry 8 × 6 metrů.

5 let  4 Likes
#
Mongol
Kreslením je to sice pomalejší , ale jednodušší

avatar








 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Související a podobné příklady:

  • Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  • Číselna osa
    osa V kocourkovské škole používají zvláštní číselnou osu. Vzdálenost mezi čísly 1 a 2 je 1 cm, vzdálenost mezi čísly 2 a 3 je 3 cm, mezi čísly 3 a 4 je 5 cm, a tak dále, vzdálenost mezi následující dvojicí přirozenými čísly se vždy zvètší o 2 cm. Mezi kterými
  • Mirek a Zuzka
    mo Obdélník je rozdělený na 7 políček. Na každé políčko se má napsat právě jedno z čísel 1, 2 a 3. Mirek tvrdí, že to lze provést tak, aby součet dvou vedle sebe napsaných čísel byl pokaždé jiný. Zuzka naopak tvrdí, že to možné není. Rozhodněte, kdo z nich m
  • Sklepy
    Spider-and-Fly V prvním sklepě je víc much než pavouků, ve druhém naopak. V každém sklepě měli mouchy a pavouci dohromady 100 nohou. Určete kolik mohlo být much a pavouků v prvním a kolik ve druhém sklepě. PS. Nám stačí, když napíšete kolik rěšení má tenhle úkol.
  • Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  • C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  • Výpočty
    numbers Zlomky: 14/17 . 34/56 + 6/9 + 10/13 : 5/26 = 10/16 - ¼ + 15/18 : 5/9 = ¾ . (25/42 - 3/7) +16/21 : 4/7 = 2. Celá čísla: (-12) + (-6). (-2) - (-14) : 2 = 35 : (-5) + (-12) . 2 + (-6) = 42 : (-3) . (-5) - (-12)+ (-16) =
  • Osum kvádrů
    cuboids Dana měla za úlohu uložit osum kvádrů podle těchto pravidel: 1. Mezi dvěma červenými kvádry musí být jeden jiné barvy. 2. Mezi dvěma modrými musí být dva jiné barvy. 3. Mezi dvěma zelenými musí být tři jiné barvy. 4. Mezi dvěma žlutými kvádry musí být čty
  • Betka
    numbers Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládal
  • Vláček
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vagonu
  • Roberti (Z7–I–4)
    1-robot V robotí škole do jedné třídy chodí dvacet robotů Robertů, kteří jsou očíslováni Robert 1 až Robert 20. Ve třídě je zrovna napjatá atmosféra, mluví spolu jen někteří roboti. Roboti s lichým číslem nemluví s roboty se sudým číslem. Mezi Roberty s lichým čí
  • MO Z8-I-1 2018
    age Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
  • Z5–I–6 MO 2017
    prime Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách. Které kartičky mohly zůstat na stole? Určete všech
  • Z7–I–1 MO 2018
    numbers2 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
  • Dělitel a násobek
    n3 Vypočítej: součet dvojnásobku čísel a) 12 a 17 b) 13 a 18 rozdíl trojnásobku čísel: c) 24 a 9 d) 23 a 6 čtyřnásobek součinu čísel e) 6 a 13 f) 7 a 14 součin čtyřnásobku čísel g) 6 a 13 h) 7 a 14
  • Průměr
    integrales Pokud průměr souboru dat 5, 17, 19, 14, 15, 17, 7, 11, 16, 19, 5, 5, 10, 8, 13, 14, 4, 2, 17, 11, x je -91,74, jaká je hodnota x?
  • Z5 – I – 2 MO 2018
    triangle Tereza dostala čtyři shodné pravoúhlé trojúhelníky se stranami délek 3 cm, 4 cm a 5 cm. Z těchto trojúhelníků (ne nutně ze všech čtyř) zkoušela skládat nové útvary. Postupně se jí podařilo složit čtyřúhelníky s obvodem 14 cm, 18 cm, 22 cm a 26 cm, a to po