Mařenka MO C-I-5

Mařenka rozmístí do vrcholů pravidelného osmiúhelníku různé počty od jednoho po osm bonbónů. Peter si pak může vybrat, které tři hromádky bonbónů dá Mařence, ostatní si ponechá. Jedinou podmínkou je, že tyto tři hromádky leží ve vrcholech rovnoramenného trojúhelníku. Mařenka chce rozmístit bonbóny tak, aby je dostala co nejvíce, ať už Peter trojici vrcholů vybere jakkoli. Kolik jich tak Mařenka zaručeně získá?

b) Stejnou roli vyřešte i pro pravidelný devítiúhelník, do kterého vrcholů rozmístí Mařenka 1 až 9 bonbónů. (Mezi rovnoramenné trojúhelníky řadíme i trojúhelníky rovnostranné.)

Správná odpověď:

a =  21
b =  27

Postup správného řešení:




Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 1 komentář:
#
Leoyu10
Zdravím,
stále bych potřeboval nějaké podrobnější vysvětlení. Jak se vlastně dostanu k takovému výsledku? Děkuji za odpověď.

avatar







Tipy na související online kalkulačky
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Související a podobné příklady: