Tětiva 16

Je dána kružnice k(S, r=6cm) a na ní body A, B tak, že /AB/ = 8cm. Vypočítej vzdálenost středu S kružnice k od středu C úsečky AB.


Správný výsledek:

x =  4,4721 cm

Řešení:

r=6 cm a=8 cm a2=a/2=8/2=4 cm x=r2a22=6242=2 5=4.4721 cm



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Tětiva
    tetiva2 Na kružnici k(S;r=8cm) jsou různé body A, B spojené úsečkou /AB/=12cm. Střed AB označ S´. Vypočítej /SS´/. Proveď náčrtek.
  • Dve tětivy
    tetivy Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.
  • Tětiva
    tetiva2 Je dána kružnice k (S, 5cm). Vypočítejte délku tětivy kružnice k, jestliže je od středu S vzdálena 3cm.
  • Tětiva AB
    chord_3 Jakou délku má tětiva AB, jejíž vzdálenost od středu S kružnice k (S, 117 cm) se rovná 7 cm?
  • Tětiva
    chord V kružnici o poloměru r = 70 cm je tětiva 10 × delší než její vzdálenost od středu. Jaká je délka tětivy?
  • Tětiva 5
    kruhy Je dána kružnice k/S 5 cm/. Její tětiva MN je vzdálena od středu kružnice 3 cm. Vypočítej její délku.
  • Tětiva
    tetiva33 Jakou vzdálenost mají tečna t kružnice (S, 4 cm) a tětiva této kružnice, která má délku 6 cm a je rovnoběžná s tečnou?
  • Tětiva kružnice
    circles_6 Vypočítejte délku tětivy kružnice o poloměru r = 10 cm, jejíž délka se rovná její vzdálenosti od středu kružnice.
  • Chodník jak tětiva
    chodnik2 Vypočítej délku chodníku, který vede přes kruhové náměstí s průměrem 40 m, pokud je chodník od středu náměstí vzdálen 15 m
  • Tětiva 2
    circle_ Bod A má od středu kružnice s poloměrem r = 5 cm vzdálenost 13 cm. Vypočítejte délku tětivy spojující body dotyku T1 a T2 tečen vedených z bodu A ke kružnici k.
  • Společná tětiva
    chord2 Dvě kružnice s poloměry 17 cm a 20 cm se protínají ve dvou bodech. Jejich společná tětiva dlouhá 27 cm. Jaká je vzdálenost středů těchto kružnic?
  • Tětiva - vzdálenost
    tetiva V kružnici k (S; 6cm) vypočítejte vzdálenost tětivy t od středu kružnice S, pokud délka tětivy je t = 10cm.
  • Tětiva
    circles_4 Vypočítejte délku tětivy, jejíž vzdálenost od středu S kružnice k (S, 23 cm) se rovná 12 cm.
  • Tětiva 20
    tetiva2 V kružnici s průměrem d= 10 cm, je sestrojena tětiva o délce 6 cm. Jaký poloměr by měla soustředná kružnice, která by se této tětivy dotýkala?
  • Mezikruží
    medzikruzie2 Na obrázku jsou 2 soustředné kružnice. Tětiva větší kružnice s délkou 10 cm je tečnou menší kružnice. Jaký obsah má mezikruží?
  • Je dána 4
    tetiva2 Je dána kružnice o poloměru 10 cm a její tětiva, která má délku 12 cm. Vypočtěte velikost středového úhlu, který této tětivě přísluší.
  • Tečna
    thales_3 Je dána kružnice k se středem S a poloměrem 3,5cm. Vzdálenost přímky p od středu je 6 cm. Sestrojte tečnu kružnice n, která je kolmá na přímku p