Z7-I-5 MO 2017

Prokop zostrojil trojuholník ABC, ktorého vnútorný uhol pri vrchole A bol väčší ako 60° a vnútorný uhol pri vrchole B bol menší ako 60°. Juraj narysoval v polrovine určenej priamkou AB a bodom C bod D, a to tak, že trojuholník ABD bol rovnostranný. Potom chlapci zistili, že trojuholníky ACD a BCD sú rovnoramenné s hlavným vrcholom D. Určte veľkosť uhla ACB.

Správný výsledek:

x =  30 °

Řešení:

x=ACB y=DCB=CBD z=ADC  ADB=60 CD=AD=DB=AB=a DAC=DCA=x+y  BCD:2y+60+z=180 ACD:2(x+y)+z=180  2y+z=120 2x+2y+z=180  2x+120=180 x=(180120)/2=30



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 4 komentáře:
#
Žák 2004
Vysvětlíte to lehčím způsobem

#
Euklides
Toto je analyticko-algebraické řešení, kdy za neznámé úhly dosadíte proměnné x,y,z, dosadíte si je do rovnic dle známého pravidla, že součet vnitřních úhlů trojúhelníku je 180° a vyřešíte soustavu rovnic. Dostanete výsledek - 30°
Zajímavější je zamyslet se nad tím, proč je to VŹDY právě 30°
A tady je mnohem názornější geometrické řešení přes středové a obvodové úhly kružnice.
Sestrojte rovnoramenný trojúhelník ABD a kružnici se středem v bodu D procházející body A i B.
Jako bod C si zvolte jakýkoliv bod na kružnici (v polorovinně dané přímkou AB a bodem D).
Jelikož úhel ACB (který máme určit) je obvodovým úhlem ke středovému úhlu ADB (a ten je 60° z definice rovnostrannosti tohoto trojúhelníku), jeho velikost je přesně jeho polovinou. A to VŽDY, nezávisle na tom, kde se bod C na kružnici nachází.
Nakreslete si, je to pak vidět lépe než ze soustavy rovnic.

2 roky  2 Likes
#
Žák
kde je bod c?

#
Žák
kde je bod d? ne c

avatar









Tipy na související online kalkulačky
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • Rovnoramenný lichoběžník
    mo-klm Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikost
  • Z7-1-6 MO 2018
    iso_rt Je dán rovnoramenný pravoúhlý trojúhelník ABS se základnou AB. Na kružnici, která má střed v bodě S a prochází body A a B, leží bod C tak, že trojúhelník ABC je rovnoramenný. Určete, kolik bodů C vyhovuje uvedeným podmínkám, a všechny takové body sestrojt
  • Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek
  • Půlkruh
    tales-de-mileto V půlkruhu se středem S a průměrem AB je sestrojen rovnostranný trojúhelník SBC. Jaká je velikost úhlu ∠ SAC?
  • Z8-I-2 MO 2017
    klm1 V ostroúhlém trojúhelníku KLM má úhel KLM velikost 68°. Bod V je průsečíkem výšek a P je patou výšky na stranu LM. Osa úhlu P V M je rovnoběžná se stranou KM. Porovnejte velikosti úhlů MKL a LMK.
  • Množina bodů Z7–I–5.
    triangles_12 Je dán trojúhelník ABC se stranami /AB/=3 cm, /BC/= 10 cm a úhlem ABC = 120°. Narýsujte všechny body X tak, aby platilo, že trojúhelník BCX je rovnoramenný a současně trojúhelník ABX je rovnoramenný se základnou AB.
  • Vnitřní úhly
    rr_triangle3 Velikost vnitřního úhlu u hlavního vrcholu C rovnoramenného trojúhelníku ABC je 72°. Přímka p, rovnoběžná se základnou tohoto trojúhelníku, rozděluje trojúhelník na lichoběžník a menší trojúhelník. Jak velké jsou vnitřní úhly lichoběžníku?
  • Sestroj OP
    tecna Je dána kružnice k (S; 2,5 cm) a vnější přímka p. Sestroj tečnu t této kružnice, která s přímkou p svírá úhel 60°. Kolik řešení ma úkol?
  • Vepsaná
    vpisana2 Vypočítejte velikost úhlu BAC v trojúhelníku ABC pokud víte, že je třikrát menší než úhel BOC, kde O je střed kružnice vepsané do trojúhelníka ABC.
  • Znáš velikost
    triangle_1212_1 Znáš velikost dvouch vnitřních úhlu trojúhelníku alfa = 40° beta = 60°. Dopočítej velikost třetího vnitřního úhlu.
  • Tětiva
    Tetiva Strana trojúhelníku vepsaného do kružnice je tětivou procházející jejím středem. Jakou velikost mají vnitřní úhly trojúhelníku, pokud jeden z nich má 40°?
  • Dva úhly
    rt_1_1 Trojúhelníky ABC a A'B'C 'jsou podobné. V trojúhelníku ABC jsou velikosti dvou úhlů 25° a 65°. Zdůvodnite, proč v trojúhelníku A'B'C 'je součet velikostí dvou c rovný 90°.
  • Vnější úhly
    triangle_1111_3 Vnější úhel trojúhelníku ABC při vrcholu A je 71°40' ; vnější úhel při vrcholu B je 136°50'. Jakou velikost má vnitřní úhel trojúhelníku při vrcholu C?
  • Osmiúhelník
    220px-N_uholnik Sestrojte pravidelný osmiúhelník ABCDEFGH vepsaný kružnici k (S; r =2,5 cm). Zvolte bod S´ tak, aby |SS'| = 4,5 cm. Sestrojte S(S') : ABCDEFGH - A'B'C'D'E'F'G'H'.
  • Úhly
    triangles_6 Zjisti zda mohou být uvedené hodnoty velikostmi vnitřních úhlů nějakého trojuhelníku: a) 23°10',84°30',72°20' b) 90°,41°33',48°37' c) 14°51',90°,75°49' d) 58°58',59°59',60°3'
  • Úplná konstrukce
    thalet Sestrojte trojúhelník ABC, přepona c = 7 cm, úhel ABC=30 stupňů. /Použijte Thaletovu kružnici/. Změřte a napište délku odvěsen.
  • Z7–I–2 MO 2017
    rt_triangle_2 Jsou dány dvě dvojice rovnoběžných přímek AB k CD a AC k BD. Bod E leží na přímce BD, bod F je středem úsečky BD, bod G je středem úsečky CD a obsah trojúhelníku ACE je 20 cm2. Určete obsah trojúhelníku DFG.