Geometrie - slovní úlohy a příklady - strana 28 z 37
Počet nalezených příkladů: 732
- Na přímce 3
Na přímce p: 2x + y + 1 = 0 najděte bod A ∈ p, který je nejblíže bodu P =(1,0)
- Vypočítejte: 8172
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (6t²+ 4t ; 3t + 1) kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době t = 2s
- Vrcholy trojúhelníku
Určete souřadnice vrcholu trojúhelníku ABC, známe-li středy SAB [0;3] SBC [1;6] SAC [4;5], jeho stran AB, BC, AC.
- Súradnice trojuholníka
Trojúhelník je dán třemi vrcholy: A [0,0] B [-4,2] C [-6,0] Vypočítejte V (průsečík výšek), T (těžiště), O - střed kružnice opsané
- Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Těžiště tetraeder
Určete polohu těžiště soustavy čtyř hmotných bodů, které mají hmotnosti, m1, m2 = 2m1, m3 = 3M1 a m4 = 4m1, pokud leží ve vrcholech rovnoramenné tetraedru. (Ve všech případech mezi sousedními hmotnými body je vz
- Dotyčnica elipsy
Najděte dotyčnici elipsy 9 x² + 16 y² = 144, která má sklon k = -1
- Kružnice
Kružnice k má střed S[-7; 10] a největší tětiva má délku 13. Kolik společných bodů má kružnice se souřadnicovými osami?
- Vzdáleností 36831
Je dána přímka p a dva vnitřní body jedné z polorovin, určených přímkou p. Najdi na přímce p bod X tak, aby součet jeho vzdáleností od bodů A, B byl nejmenší.
- Libovolných 69194
V rovině je 10 libovolných bodů. Kolik nejvíce kružnic je jimi určeno?
- Trojúhelníku 7247
Na straně AB trojúhelníku ABC jsou dány body D a E tak, že |AD| = |DE| = |EB|. Body A a B jsou postupně středy úseček CF a CG. Přímka CD protíná přímku FB v bodě I a přímka CE protíná přímku AG v bodě J. Dokažte, že průsečík přímek AI a BJ leží na přímce
- Vypočítejte: 8173
Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t²; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Podobnost
Jsou dva pravoúhlé trojúhelníky navzájem podobné, pokud první má ostrý úhel 80° a druhý má ostrý úhel 20°?
- Střední příčka
Střední příčka lichoběžníka p je 18,6 cm a základna a=29,8 cm. Vypočítejte velikost druhé základny c.
- Souřadnice průsečíku
V pravoúhlé soustavě souřadnic je narýsován obdélník ABCD. Vrcholy obdélníku jsou určeny těmito souřadnicemi A= (2,2) B= (8,2) C= (8,6) D= (2,6) Určete souřadnice průsečíku úhlopříček obdélníku ABCD
- Čtverec
Sestrojte čtverec ABCD se středem S[3,2] a stranou a=4cm. Vrchol A leží na ose x. Sestrojte jeho obraz v posunutí daném orientovanou úsečkou SS´; S`[-1, - 4].
- Slovo
Jaká je pravděpodobnost, že slovem náhodně sestaveným z písmen P, Ř, D, L, K, A, Í bude PŘÍKLAD?
- Nádoba - kužel
Uzavřená nádoba ve tvaru kužele stojící na své podstavě je naplněna vodou tak, že hladina se nachází 8 cm od vrcholu. Po otočení nádoby o 180 stupňů – stojí na vrcholu – je hladina vzdálena 2 cm od podstavy. Jak vysoká nádoba je?
- Průsečík přímky a roviny
Je dán pravidelný čtyřboký jehlan ABCDV, uvnitř jeho hrany AV je bod M, na prosloužené úsečce DC za bod C je bod N. Sestrojte průsečnici roviny MNV s rovinou BCV a průsečík přímky MN a roviny BCV.
- Seříznutý kužel
Horní a dolní poloměr seříznutého pravého kruhového kužele je 8 cm a 32 cm. Je-li výška seříznutého okraje 10 cm, jak daleko od spodní základny musí být vytvořena rovina řezu, aby se vytvořily dva podobné seříznuté kužele?
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.