Nádoba - kužel

Uzavřená nádoba ve tvaru kužele stojící na své podstavě je naplněna vodou tak, že hladina se nachází 8 cm od vrcholu. Po otočení nádoby o 180 stupňů – stojí na vrcholu – je hladina vzdálena 2 cm od podstavy. Jak vysoká nádoba je?

Správná odpověď:

h =  10,2195 cm

Postup správného řešení:

h1=810.2195 cm h2=28.2195 cm  V=13πr2 h V3=13πr12 h1  V1=VV3 V1=13πr2 h13πr12 h1 V1=13π(r2 hr12 h1)  r1<r2<r r1:h1=r:h r1=r h1/h r2:(hh2)=r:h r2=r (hh2)/h  V2=13πr22(hh2)  V1=V2  13π(r2 hr12 h1)=13πr22(hh2) (r2 hr12 h1)=r22(hh2) (r2 h(r h1/h)2 h1)=(r(hh2)/h)2(hh2)  (h(h1/h)2 h1)=((hh2)/h)2(hh2)  (h(8/h)2 8)=((h2)/h)2(h2) h(h2)=84  h22h84=0  a=1;b=2;c=84 D=b24ac=2241(84)=340 D>0  h1,2=b±D2a=2±3402=2±2852 h1,2=1±9.21954445729 h1=10.2195444573 h2=8.21954445729   Soucinovy tvar rovnice:  (h10.2195444573)(h+8.21954445729)=0  h>0  h=h1=10.2195 cm

Výpočet overte naším kalkulátorem kvadratických rovnic.




Našel si chybu či nepřesnost? Klidně nám ji napiš.



avatar




Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Vyzkoušejte naši kalkulačka na přepočet poměru.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Související a podobné příklady:

  • Velký kužel
    truncated_cone Seříznutý rotační kužel má podstavy s poloměry r1 = 8 cm, r2 = 4 cm a výšku v = 5 cm. Jaký je objem kužele, ze kterého komolý kužel vznikl?
  • Nádoba s vodou
    cubes2 Nádoba tvaru kostky je naplněna do dvou třetin své výšky. Pokud odlijeme 18 litrů, bude naplněna do tří pětin výšky. Jaký je objem celé nádoby?
  • Maják
    maiak Muž, 180 cm vysoký, kráčí po nábřeží přímo k majáku. Mužův stín, způsobený světlem majáku, je na začátku dlouhý 5,4 m. Když se muž přiblíží k majáku o 90 metrů, zkrátí se jeho stín o 3 metry. Jak vysoký je maják a jak daleko je muž od něho vzdálený?
  • Nádoba
    watertank Nádoba tvaru kvádru má výšku 52 cm a čtvercovou podstavu. Nádoba byla naplněna až po okraj vodou, pak jsme do ní ponořili kovovou kostku, což způsobilo, že z nádoby vyteklo 2,7 l vody. Po vytažení kostky z vody poklesla hladina vody v nádobě o 12 cm. Koli
  • Cukrářka 2
    cukrrka Cukrářka potřebuje z cukrářské hmoty ve tvaru koule o poloměru 25cm vyřezat ozdobu ve tvaru kužele. Určete poloměr podstavy ozdoby a (a výšku h) tak, aby se na výrobu ozdoby použilo co nejvíce hmoty.
  • Zcela naplněna
    valec Nádoba tvaru válce obsahuje 80 l vody, je zcela naplněna. Výška nádoby je 70 cm. Vypočítej průměr dna nádoby.
  • Kužel
    kuzel3 Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
  • Rovnostranny kužel
    kuzel_rs Do nádoby tvaru rovnostranného kužele, jehož podstava má poloměr r = 6 cm nalijeme tolik vody, že se naplní jedna třetina objemu kužele. Do jaké výšky bude sahat voda, pokud kužel obrátíme dnem vzhůru?
  • Kužel s průměrem
    kuzel2 Nádoba tvaru kužele s průměrem dna 60cm a boční stranou délky 0,5m je zcela naplněna vodou. Vodu přelijeme do nádoby, která má tvář válce o poloměru 3dm a výšce 20cm. Bude válec přetékat, nebo naopak nebude plný? Vypočítejte kolik vody přeteče, nebo naopa
  • Poměr obsahů
    kuzel2 Poměr obsahu podstavy rotačního kužele k jeho plášti je 3: 5. Vypočítejte povrch a objem kužele, pokud jeho výška v = 4 cm.
  • Nádoba
    cube_sphere_in Nádoba tvaru kostky je naplněna vodou do poloviny své výšky. Pokud dolijeme 20 l vody, bude nádoba naplněna do tří čtvrtin své výšky. Jaký je objem celé nádoby?
  • Hranol 6b
    hranol6b Pravidelný šestiboký hranol má povrch 140 cm2, výšku 5 cm. Vypočítejte jeho objem.
  • Osový řez
    rez_kuzel Osový řez kužele je rovnoramenný trojúhelník, v němž je poměr průměru kužele a stěny kužele 2: 3. Vypočtěte jeho objem, pokud víte, že jeho plocha je 314 cm čtverečních.
  • Komolý kužel
    zrezany_kuzel Kužel s poloměrem podstavy 12 cm a výškou 20 cm byl ve vzdálenosti 6 cm od podstavy seříznutý, čímž vznikl komolý kužel. Zjistěte poloměr podstavy komolého kužele.
  • Řez kužele
    cone_slice Objem kužele je 1000 cm3 a obsah jeho řezu je 100 cm2. Vypočtěte povrch kužele.
  • Rozdělit řezem
    kuzel_zrezany Daný je kužel s poloměrem podstavy 10 cm a výšce 12 cm. V jaké výšce nad podstavou ho máme rozdělit řezem rovnoběžným s podstavou, aby objemy obou vzniklých teles byly stejné? Výsledek uveďte v cm.
  • Nádoba 13
    balls2 Nádoba ve tvaru válce má obsah podstavy 300cm na druhou a výšku 10 cm. Je naplněna z 90% vodou. Do vody vkládáme postupně kovové kuličky, každou o objemu 20 cm na třetí. Po vložení kolikáté kuličky poprvé přeteče voda přes okraj nádoby?