Pythagorova věta - slovní úlohy a příklady - strana 52 z 72
Počet nalezených příkladů: 1438
- Šikmo
Obrázek znázorňuje kužel se šikmou výškou (stranou) 10,5 cm. Zakřivená plocha kužele 115,5 cm². Vypočtěte na 3 platné číslice: * Poloměr základny * výšku * Objem kužele
- Rozhledna 4
Rozhledna je kryta střechou tvaru pravidelného čtyřbokého jehlanu s podstavnou hranou 8 m a výškou 6 m. 60% krytiny je třeba vyměnit. Kolik m² je třeba zakoupit?
- Vypočtěte 12
Vypočtěte povrch a objem pravidelného devítibokého jehlanu, měří-li poloměr kružnice vepsané podstavě ρ= 12 cm a výška jehlanu je 24 cm
- Borovice
Z kmene borovice dlouhé 6m a průměru 35cm se má vyřezat trám s příčným řezem ve tvaru čtverce tak, aby čtverec měl co největší obsah. Vypočítej délku strany čtverce. Vypočítej objem trámu v metrech krychlových.
- Šestihran
Pravidelný šestihran (6 úhelník) se stěnou 6 cm je otočen o 60 ° podél přímky procházející její nejdelší úhlopříčce. Jaký je objem takto vytvořeného tělesa?
- Pravítko
Na pravítko, které má tvar hranolu s podstavou tvaru rovnostranného trojúhelníku o straně délky 3 cm, se má vyrobit pouzdro tvaru válce. Jaký musí být nejmenší vnitřní průměr pouzdra? Rozměr určete s přesností na desetiny centimetru
- Úhlopříčka 15
Vypočítejte objem krychle, jejíž tělesová úhlopříčka má velikost 75 dm. Načrtněte si obrázek a tělesovou úhlopříčku barevně zvýrazněte.
- Střecha
Střecha domu má tvar pravidelného čtyřbokého jehlanu o výšce 5 m a hraně podstavy 7 m. Kolik je třeba tašek o obsahu 540 cm²?
- Překlopíme 8187
Bednu tvaru hranolu s výškou 1 m a čtvercovou podstavou o hraně 0,6 m překlopíme účinkem síly 350 N, která působí vodorovně oproti horní hraně. Jakou hmotnost má bedna?
- Vypočítejte 4842
Obsah pláště rotačního válce je polovina obsahu jeho povrchu. Vypočítejte povrch válce, když víte, že úhlopříčka osového řezu je 5cm.
- Rovnostranné těleso
Rotační těleso vzniklo rotací rovnostranného trojúhelníku o délce strany a=2 cm kolem jedné z jeho stran. Vypočítejte objem tohoto rotačního tělesa.
- 3B hranol - stan
Kolik m² látky je třeba na zhotovení stanu pravidelného 3-bokého hranolu pokud je třeba počítat s 2% rezervou látky? Rozměry - 2m 1,6m a výška 1,4m
- Plášť 8
Plášť kužele je vytvořen svinutím kruhové úseče o poloměru 1. Pro jaký středový úhel dané kruhové výseče bude objem vzniklého kužele maximální?
- Vypočtěte 6
Vypočtěte povrch a objem pravidelného čtyřbokého jehlanu, je-li hrana dolní podstavy 18 cm a hrana horní podstavy 15 cm. Stěnová výška je 9 cm.
- Stínidlo
Stínidlo ve tvaru kužele má průměr 30 cm a výšku 10 cm. Kolik cm² materiálu budeme potřebovat, počítáme-li 10% na odpad?
- Špejle
Sklenice má tvar válce s vnitřním průměrem 12 cm, výška sklenice ode dna je 16 cm. Seříznutou špejli lze šikmo vložit do sklenice tak, že nepřečnívá přes okraj. Jaká je největší možná délka seříznuté špejle? (Tloušťka špejle se při výpočtu zanedbává.)
- Čepice
Šaškova čepice má tvar rotačního kužele. Vypočítejte kolik papíru je třeba utratit na čepici 50 cm vysokou na obvod hlavy 60 cm.
- Hranol 9
Vypočítejte objem a povrch trojbokého kolmého hranolu s podstavou pravoúhlého trojúhelníku, pokud délky odvěsen základny jsou 7,2cm a 4,7cm, výška hranolu je 24cm.
- Pravidelného 6610
Plášť rotačního válce je 4krát větší než obsah jeho podstavy. Určete objem pravidelného trojbokého hranolu, který je ve válci vepsán. Poloměr podstavy válce je 10 cm.
- Úhlopříčky 5551
Kostka má obsah stěny 81 cm². Vypočítej délku její hrany, stěnové a tělesové úhlopříčky.
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.