Úhlopříčka - slovní úlohy a příklady - strana 18 z 27
Počet nalezených příkladů: 524
- Objem
Objem pravidelného čtyřbokého hranolu je 192 cm³. Velikost jeho podstavné hrany a tělesových výšky jsou v poměru 1:3. Vypočítejte povrch hranolu. - Čtyřboký hranol 6
Vypočítej povrch čtyřbokého hranolu ABCDA'B'C'D' s lichoběžníkovou podstavou ABCD. Výška hranolu je 12 cm; údaje o lichoběžníku ABCD: délka základny AB je 8 cm, délka základny CD je 3 cm, délka ramene BC je 4 cm a délka úhlopříčky AC je 7 cm. Napovíme: Na - Maximální délka tyče v kontejneru
Do přepravního kontejneru o rozměrech a=10 m, b=4m, c=3m byla umístěna dřevěná bedna o rozměrech d=3m, e=4m a f=3m. Jaká je maximální délka rovné neohebné tyče se zanedbatelným průměrem, kterou lze v této situaci ještě do kontejneru umístit? - Čtyřboký hranol
Výška pravidelného čtyřbokého hranolu je v = 10 cm, odchylka tělesových úhlopříčky od podstavy je 60°. Určete délku podstavových hran, povrch a objem kvádru. - Plášť = 2 x podstava
Pravidelný čtyřboký hranol má objem 864cm³ a obsah jeho pláště je dvojnásobkem obsahu jeho podstavy. Určete velikost jeho tělesové úhlopříčky. - Překlopení bedny
Bednu tvaru hranolu s výškou 1 m a čtvercovou podstavou o hraně 0,6 m překlopíme účinkem síly 350 N, která působí vodorovně oproti horní hraně. Jakou hmotnost má bedna? - Borovice
Z kmene borovice dlouhé 6m a průměru 35cm se má vyřezat trám s příčným řezem ve tvaru čtverce tak, aby čtverec měl co největší obsah. Vypočítej délku strany čtverce. Vypočítej objem trámu v metrech krychlových. - Kvádr
Kvádr má objem 40 cm³. Kvádr má celkovou plochu 100 cm čtverečních. Jedna hrana kostky má délku 2 cm. Najděte délku úhlopříčky kvádru. Dejte svou odpověď správně na 3 desetinná místa. - Jehlan 6
Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=? - Špejle
Sklenice má tvar válce s vnitřním průměrem 12 cm, výška sklenice ode dna je 16 cm. Seříznutou špejli lze šikmo vložit do sklenice tak, že nepřečnívá přes okraj. Jaká je největší možná délka seříznuté špejle? (Tloušťka špejle se při výpočtu zanedbává.) - Vypočítejte kvádr
Je dán kvádr ABCDEFGH. Víme, že |AB| = 1 cm, |BC| = 2 cm, |AE| = 3 cm. Vypočítejte ve stupních velikost úhlu, který svírají přímky BG a FH . - Úhlopříčka 15
Vypočítejte objem krychle, jejíž tělesová úhlopříčka má velikost 75 dm. Načrtněte si obrázek a tělesovou úhlopříčku barevně zvýrazněte. - Válec + čtyřstěn
Nádoba tvaru rotačního válce o poloměru podstavy 5 cm je naplněna vodou. O co stoupne hladina vody v nádobě, ponoříme-li do ní pravidelný čtyřstěn o hraně 7cm. - Vypočítej 39
Vypočítej objem (V) a povrch (S) pravidelného čtyřbokého hranolu, jehož výška je 28,6 cm a odchylka tělesové úhlopříčky od roviny podlahy je 50°. - Vypočtěte 2
Vypočtěte objem a povrch krychle, jestliže tělesová úhlopříčka měří 10 dm. - Truhlář
Kvádr s podstavou a rozměry 12 cm a 5 cm a výšce 4 cm. Truhlář tento kvádr rozřezal na dva shodné trojboké hranoly s podstavami ve tvaru pravoúhlého trojúhelníku. Truhlář vytvořeny hranoly natřel barvou. Vypočítejte povrch jednoho z těchto dvou trojbokých - Povrch rotačního válce
Obsah pláště rotačního válce je polovina obsahu jeho povrchu. Vypočítejte povrch válce, když víte, že úhlopříčka osového řezu je 5cm. - Roviny bočních stěn
Vypočítej objem a povrch kvádru jehož strana c má délku 30 cm a tělesová úhlopříčka svírá s rovinami bočních stěn úhly o velikostech 24 st. 20’, 45 st. 30’ - Hranol 4b-pravidelný
Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů. - Šestihran
Pravidelný šestihran (6 úhelník) se stěnou 6 cm je otočen o 60 ° podél přímky procházející její nejdelší úhlopříčce. Jaký je objem takto vytvořeného tělesa?
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.
