Kolmý průmět

Určete vzdálenost bodu B [1, -3] od kolmého průmětu bodu A [3, -2] na přímku 2 x + y + 1 = 0.

Správná odpověď:

d =  0

Postup správného řešení:

Bx=1;By=3 Ax=3;Ay=2  p:2 x+y+1=0.  qp;Aq  q:x+2y+c=0  Ax+2 Ay+c=0 3+2 (2)+c=0  c=7  q:x+2y+7=0  X=(x,y)=qp  x+2 y+7=0 2 x+y+1=0  x2y=7 2x+y=1  x=1 y=3  d=(Bxx)2+(Byy)2=(11)2+((3)(3))2=0



Našel si chybu či nepřesnost? Klidně nám ji napiš.



avatar







Tipy na související online kalkulačky
Základem výpočtů v analytické geometrii je dobrá kalkulačka rovnice přímky, která ze souřadnic dvou bodů v rovině vypočítá smernicový, normálový i parametrický tvar přímky, směrnici, směrový úhel, směrový vektor, délku úsečky, průsečíky se souřadnicovým osami atd.
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Chcete proměnit jednotku délky?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Související a podobné příklady:

  • Najděte
    scalar_product Najděte vektor v4 kolmý na vektory v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) a v3 = (0, 0, 1, 1)
  • Souřadnice vrcholů
    geodet Určete souřadnice vrcholů a obsah rovnoběžníku, jehož dvě strany leží na přímkách 8x + 3y + 1 = 0, 2x + y-1 = 0 a úhlopříčka na přímce 3x + 2y + 3 = 0
  • Parametrický tvar
    vzdalenost Vypočítejte vzdálenost bodu A[2,1] od přímky p: X=-1+3t Y=5-4t Přímka p má parametrický tvar rovnice přímky. ..
  • Vektory v prostoru
    vectors Dáno jsou vektory u = (1; 3; -4), v = (0; 1; 1). Určete velikost těchto vektorů, Vypočtěte úhel vektorů, vzdálenost mezi vektory.
  • Osová souměrnost
    axail_symmetry Vypočítejte souřadnice bodu B osově symetricky s bodem A [-1, -3] podél přímky p: x + y - 2 = 0.
  • Kolmé 3D vektory
    3dperpendicular Najděte vektor a = (2, y, z) tak, že a⊥b a ⊥ c kde b = (-1, 4, 2) a c = (3, -3, -1)
  • Vzdálenost
    distance_point_line Vypočítejte vzdálenost bodu A [0, 2] od přímky procházející body B [9, 5] a C [1, -1].
  • Vzdálenost bodů 2
    stredna_priecka Vypočítej vzdálenost bodů X[1,3] od středu úsečky x=2-6t, y=1-4t; t je z intervalu <0,1>.
  • Kulová plocha
    sphere2.jpg Získejte rovnici kulové plochy se středem na čáře 3x + 2z = 0 = 4x-5y a prochází body (0, -2, -4) a (2, -1,1).
  • Přímka 6
    lines Přímka p je dána bodem P [ - 0,5;1] a směrovým vektorem s= (1,5; - 3) určete: A) hodnotu parametru t pro body X [ - 1,5;3], Y [1; - 2] přímky p B) zda body R [0,5; - 1], S [1,5;3] leží na přímce p C) parametrické rovnice přímky m || p, prochází-li přímka
  • Skalární součin
    vectors_sum0 Vypočtěte skalární součin dvou vektorů: (2,5) (-1, -4)
  • Směrový vektor
    vectors A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD
  • Na přímce
    primka Na přímce p: x=4+t, y=3+2t, t jsou R, určete bod C, který má stejnou vzdálenost od bodů A[1,2] a B[-1,0].
  • Vzdálenost
    geodetka A = (x, 2x) B = (2x, 1) Pokud je vzdálenost AB = √2, nalezněte hodnotu x
  • Na přímce
    linearna Na přímce p: 3 x - 4 y - 3 = 0, určte souradnice bodu C, který je ve stejné vzdálenosti od bodů A [4, 4] a B [7, 1].
  • Čtverec 28
    ctverec Čtverec ABCD má střed S[−3, −2] a vrchol A[1, −3]. Určete souřadnice ostatních vrcholů čtverce.
  • Najděte
    intersect_circles Najděte průsečíky kružnic: x2 + y2 + 6 x - 10 y + 9 = 0 a x2 + y2 + 18 x + 4 y + 21 = 0