MO Z9–I–2 - 2017
V lichoběžníku VODY je VO delší základnou a průsečík úhlopříček K dělí úsečku VD v poměru 3:2 . Obsah trojúhelníku KOV je 13,5 cm2. Urči obsah celého lichoběžníku.
Správná odpověď:

Zobrazuji 21 komentářů:
Dr Math
k2,k3,k4 - koeficienty zvětšení / zmenšení; neco jako stejnolehlosti. Koeficient zvětšení / zmenšení obsahu je druhou mocninou koeficientu zvětšení / zmenšení délky ...
S1 je trojúhelník KOV
S2 je trojúhelník KDY
S3 je trojúhelník ODK
S4 je trojúhelník VKY
obsah trojúhelník je strana x vyska / 2. Např. trojúhelník S3 = DYV - S2, a DYV ma k3-krat větší výšku než S2. atd
S1 je trojúhelník KOV
S2 je trojúhelník KDY
S3 je trojúhelník ODK
S4 je trojúhelník VKY
obsah trojúhelník je strana x vyska / 2. Např. trojúhelník S3 = DYV - S2, a DYV ma k3-krat větší výšku než S2. atd
Aja
Pořád nechápu, jak určit obsah trojúhelníků S3 a S4. Které trojúhelníky jsou podobné? V čem? Proč má být výška DYV k3krát větší než v S2. Výšku v S2 neznám.
7 let 1 Like
@user
Dr Math díky za Vaše řešení. Pro mě je to nejjednodušší takto:
S1 = 13,5 cm2
k2 = (2/3)*(2/3)
S2 = k2 . S1 = 6 cm2
S3 = (2/3) . S1 = 9 cm2
S4 = (3/2) . S2 = 9 cm2
S = S1 + S2 + S3 + S4 = 37,5 cm2
S1 = 13,5 cm2
k2 = (2/3)*(2/3)
S2 = k2 . S1 = 6 cm2
S3 = (2/3) . S1 = 9 cm2
S4 = (3/2) . S2 = 9 cm2
S = S1 + S2 + S3 + S4 = 37,5 cm2
7 let 2 Likes
Josef
Nebyla by nějaká verze řešení --verbose?
Stále mi uniká původ/účel těch zmíněných koeficientů a z čeho vychází věta, že "Koeficient zvětšení / zmenšení obsahu je druhou mocninou koeficientu zvětšení / zmenšení délky"?
Stále mi uniká původ/účel těch zmíněných koeficientů a z čeho vychází věta, že "Koeficient zvětšení / zmenšení obsahu je druhou mocninou koeficientu zvětšení / zmenšení délky"?
Dr Math
obsah trojuhelniku S = a*h/2. ak stranu zvacsim k-krat, zvacsi sa obsah k-krat. Ak stranu a aj vysku zvacsim k-krat, zvacsi sa obsah k2 krat.... S2 = ak*hk/2 = ah/2 * k2 = S1 * k2.
Josef
Dr Math, díky za komentář, jasné a přínosné! Na rozdíl od Matikar, jehož rádoby příspěvek je naprosto zbytečný.
Vítek
Nakonce jsem pochopil vysvětlení od @user.
Pokud byste s tím měli někdo stejný problém jako já, osvětluji:
- výpočet funguje takto: S1 = a × v ÷ 2 = 13,5
- u trojúhelníku S2 se oproti S1 zvětšily 2/3krát výška i strana -> S2 = ak × vk ÷ 2 = k² × a × v ÷ 2 = k² × S1 = (2/3)² × 13,5 = 6
- u trojúhelníku S3 se oproti S1 zvětšila 2/3krát pouze strana (pokud bereme v úvahu údaje ve vzorci) -> S3 = ak × v ÷ 2 = k × a × v ÷ 2 = k × S1 = (2/3) × 13,5 = 9
- u trojúhelníku S4 se oproti S2 zvětšila také pouze strana, ale 3/2krát -> S4 = ak × v ÷ 2 = k × a × v ÷ 2 = k × S1 = (3/2) × 6 = 9
Pokud byste s tím měli někdo stejný problém jako já, osvětluji:
- výpočet funguje takto: S1 = a × v ÷ 2 = 13,5
- u trojúhelníku S2 se oproti S1 zvětšily 2/3krát výška i strana -> S2 = ak × vk ÷ 2 = k² × a × v ÷ 2 = k² × S1 = (2/3)² × 13,5 = 6
- u trojúhelníku S3 se oproti S1 zvětšila 2/3krát pouze strana (pokud bereme v úvahu údaje ve vzorci) -> S3 = ak × v ÷ 2 = k × a × v ÷ 2 = k × S1 = (2/3) × 13,5 = 9
- u trojúhelníku S4 se oproti S2 zvětšila také pouze strana, ale 3/2krát -> S4 = ak × v ÷ 2 = k × a × v ÷ 2 = k × S1 = (3/2) × 6 = 9
Milujumo
Výpočty chápu, ale vysvětlí mi někdo, jak dojít třeba k tomu, že se u S2 zvětšila výška i strana 2/3krát? Stranu chápu, tam je napsáno to 3:2, ale výšku?
7 let 1 Like
Dr Math
rovnoramenný lichoběžník - to se nikde ani nespomina ani netvrdi. Obrazek je pouze ilustrativni (aby vas svedl) a ze zadani je jasne "Obsah trojúhelníku KOV je 13,5 cm2" - ze v reali jsou takovych trojuhelniku tuny (nekonecno). napr strana k=13.5 cm a vejska na k 2 cm. I tu bychom napovedelo ze priklad lze spocitat spravne kdyz si zvolim nejake libovolne rozmery trojuhlenika KOV. A pak zobecnim reseni (induktivne) ze pro vsechny KOV s obsahem 13,5 cm2
7 let 1 Like
Dr Math
Priklad je abstraktny.... tj. nema zmysel merat strany a uhlopricky.... Patrne vyhovuje napr. strana a=1 a jemu prislouchajici uhlopricky ale take a = 1000 cm a jemu prislouchajici uhlopricky. Avsak obsah bude stale stejny a rovnez pomer 3:2
Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
geometrieplanimetriezákladní operace a pojmyÚroveň náročnosti úkolu
Související a podobné příklady:
- Lichoběžník 83
Lichoběžník ABCD je složen z pěti trojúhelníků. Body E, G dělí úsečku AB v poměru 2:4:3 (v tomto pořadí) na tři úsečky. Bod F je středem úsečky AD. Trojúhelník AEF je rovnoramenný a pravoúhlý. Trojúhelníky GBC a CDG jsou pravoúhlé. Obsah trojúhelníku AEF
- V lichoběžníku 3
V lichoběžníku ABCD jsou dány délky základen |AB| = 12 cm, |CD| = 8 cm. Bod S je průsečík úhlopříček, pro který platí |AS| = 6 cm. Vypočítej délku celé úhlopříčky AC.
- Lichoběžník
V rovnoramenného lichoběžníku KLMN je průsečík úhlopříček označen písmenem S. Vypočítejte obsah lichoběžníku, pokud /KS/: /SM/ = 2:1 a obsah trojúhelníku KSN je 14 cm².
- V lichoběžníku
V lichoběžníku ABCD známe AB = 8 cm, výšku lichoběžníku 6 cm a průsečík úhlopříček je od AB vzdálen 4 cm. Vypočítejte obsah lichoběžníku.
- Sad
Sadem tvaru lichoběžníku prochází cesta kolmá na rovnoběžné strany. Je široká 80 cm. Délky základen jsou v poměru 5:3 a délka delší základny k délce cesty je v poměru 5:6. Kolik metrů čtverečních zabírá cesta, je-li výměra celého sadu 5 400 m²?
- Sestrojený čtverce
Na dvěma stranami trojúhelníku ABC jsou sestrojeny čtverce. Obsah čtverce nad stranou BC je 25 cm². Velikost výšky vc na stranu AB je 3 cm. Pata P výšky vc dělí stranu AB v poměru 2 : 1. Strana AC je delší než strana BC. Vypočtěte v cm délku strany AB. Vy
- Základny
Základny rovnoramenného lichoběžníku ABCD mají délky 10 cm a 6 cm. Jeho ramena svírají s delší základnou úhel α = 50˚. Vypočtěte obvod a obsah lichoběžníku ABCD.