Pythagorova věta - slovní úlohy a příklady - strana 47 z 72
Počet nalezených příkladů: 1439
- Iglu stan
Stan ve tvaru kužele je vysoký 3 m, průměr jeho podstavy je 3,2 m. a) Stan je vyroben je ze dvou vrstev materiálu. Kolik m² látky třeba na výrobu (včetně podlahy), pokud k minimálnímu množství třeba kvůli odpadu při stříhání přidat 20%? b) Kolik m³ vzduch
- Tajný poklad
Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
- Válec
Válec je třikrát vyšší než je jeho šířka. Délka úhlopříčky válce je 20 cm. Najděte plochu horní části válce.
- Čtyrstěn
Vypočtěte výšku a objem pravidelného čtyřstěnu, jehož hrana má délku 13 cm.
- Kužel s průměrem
Nádoba tvaru kužele s průměrem dna 60cm a boční stranou délky 0,5m je zcela naplněna vodou. Vodu přelijeme do nádoby, která má tvář válce o poloměru 3dm a výšce 20cm. Bude válec přetékat, nebo naopak nebude plný? Vypočítejte kolik vody přeteče, nebo naopa
- Pyramidy v Gize
Petr si z dovolene v Egypte přivezl model pyramidy ve tvaru pravidelného čtyřbokého jehlanu. Změřil si že jeji podstavna hrana má delku 7cm a bočni hrana má delku 10 cm. Model má hmotnost 1kg a je vyroben z neznámého kovu. Z jakeho kovu je model vyroben?
- Drátěný model
Drátěný model pravidelného šestibokého hranolu s podstavnou hranou délky a = 8 cm má výšku v = 12 cm. Těleso se přelepí papírem, podstavy tmavým a plášť bílým. - Vypočtěte v cm největší možnou přímou vzdálenost dvou vrcholů drátěného hranolu (tloušťku drá
- Krychle
Krychle je vepsána do koule o objemu 1579 cm³. Určete délku hrany krychle.
- Rovnostranny kužel
Do nádoby tvaru rovnostranného kužele, jehož podstava má poloměr r = 6 cm nalijeme tolik vody, že se naplní jedna třetina objemu kužele. Do jaké výšky bude sahat voda, pokud kužel obrátíme dnem vzhůru?
- Neštěstí
Pana Radomíra při poslední bouřce postihlo neštěstí, na střechu tvaru pravidelného čtyřbokého jehlanu mu spadl strom a celou mu ji poničil. Střecha má podstavou délku hrany 8m a délku boční hrany 15m. Kolik m² střešní krytiny bude muset nakoupit?
- Jáma
Jáma ve tvaru komolého jehlanu s obdélníkovými podstavami a je hluboká 3,1 m. Délka a šířka jámy je navrchu 3 × 1,5 m, dole 1 m × 0,5 m. Na natření 1 metre čtvereční jámy je třeba 1,4 l zelené barvy. Kolik litrů barvy se na její natření použije, pokud nat
- Plovák
0,5 m kulovitý plovák je používán jako umístění ochranné značky pro kotvící rybářské lodě. Plave ve slané vodě. Najděte hloubku, ve které plovák klesá v případě, že materiál, ze kterého je vyroben váží 8 kilogramů na metr krychlový a slaná voda hmotnost 1
- Součet velikostí hran
Vypočtěte povrch kvádru, je-li dán součet velikostí jeho hran a+b+c=19 cm a velikost tělesové úhlopříčky u=13 cm.
- Stan pro skauty
Stan pro skauty má dřevěnou obdélníkovou podsadu s rozměry 220 cm a 150 cm. Kolik plátna je třeba na střechu tvaru čtyřbokého jehlanu vysokého 170 cm?
- Jehlan
Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
- Autobusová
Autobusová čekárna má tvar pravidelného čtyřbokého jehlanu vysokého 4 m s hranou podstavy o velikosti 5 m. Vypočítejte, kolik m² střešní krytiny je třeba na pokrytí tří stěn pláště, bereme-li v úvahu 40% krytiny navíc na překrytí.
- Plovoucí sud
Na vodě plave sud tvaru válce, a to tak že z vody vyčnívá 8 dm do výšky a na hladině má šířku 23 dm. Délka sudu je 24 dm. Vypočítejte objem sudu.
- Stříška
Pan Peter má nad studní plechovou stříšku tvaru kužele o výšce 101 cm a poloměru 189 cm. Stříška potřebuje natřít antikorozní barvou. Kolik kg barvy musí nakoupit, jestliže výrobce udává spotřebu 1kg na 4,3 m²?
- Stan
Stan tvaru pravidelného čtyřbokého jehlanu má délku podstavné hrany a=2m a výšku v=1,8m. Kolik m² plátna potřebujeme na ušití stanu, musíme-li přidat 7% na švy? Kolik m³ bude ve stanu?
- Cukrářka 2
Cukrářka potřebuje z cukrářské hmoty ve tvaru koule o poloměru 25cm vyřezat ozdobu ve tvaru kužele. Určete poloměr podstavy ozdoby a (a výšku h) tak, aby se na výrobu ozdoby použilo co nejvíce hmoty.
Máš příklad z matematiky, který jsi tady nenašel vyřešený? Pošli nám tenhle příklad a my Ti ho zkusíme vypočítat.