Pythagorova věta - slovní úlohy a příklady - strana 46 z 72
Počet nalezených příkladů: 1439
- Trojboký jehlan
Vypočítejte objem a povrch pravidelného trojbokého jehlanu, jehož výška je stejná jako délka hrany podstavy 10 cm.
- Dvě koule
Dvě koule, jedna s poloměrem 8 cm a další s poloměrem 6 cm, se vloži do válcové plastové nádoby s poloměrem 10 cm. Najděte množství vody potřebné k jejich potopení.
- Komolý jehlan
Vypočtěte objem pravidelného šestibokého komolého jehlanu, jestliže je délka hrany dolní podstavy 30 cm, horní podstavy 12 cm a pokud délka boční hrany je 41 cm.
- Vrchol 9
Vrchol věže má tvar pravidelného šestibokého jehlanu. Podstavná hrana má délku 1,2 m, výška jehlanu je 1,6 m. Kolik metrů čtverečných plechu je potřeba na pokrytí vrcholu věže, je-li na spoje, překrytí a odpad zapotřebí 15% plechu navíc?
- Petra 4
Petra má ve dvou bedničkách tvaru krychle zasazené květiny. První bednička má vnitřní rozměr 70 cm a druhá 5dm. Chce si vyrobit jednu bedničku tvaru kvádru, kam by obě květiny z těchto bedniček přesadila. Nová bednička má mít stejný vnitřní objem jako obě
- 4-boký jehlan v2
Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm². Odchylka boční hrany od roviny podstavy je 60 stupňů.
- Kvádr težší
Kvádr má objem 32 cm³. Jeho plášť má dvojnásobný obsah než jedna ze čtvercových podstav. Jakou délku má tělesová úhlopříčka?
- Úhlopříčkou 3
Úhlopříčkou řezu DBFH pravidelného čtyřbokého hranolu ABCDEFGH je vepsán kruh o průměru 8 cm. Jaký je objem hranolu.
- Kulečník
Vrstva slonovinových kulečníkových koulí o poloměru 6,35 cm, je ve tvaru čtverce. Koule jsou uspořádány tak, že každá koule je tangenty (dotýká se) každé sousedící s ní. V prostorech mezi 4 přilehlými koulemi je prostor rovný velikosti originálu kouli. Po
- Kužel S2V
Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 cm². Vypočítejte objem tohoto kužele.
- Kvádr
Kvádr s hranou a=7 cm a tělesových úhlopříčkou u=33 cm má objem V=3136 cm³. Vypočítejte velikosti ostatních hran.
- Karnevalova čepice
Kolik dm² ozdobného papíru je potřeba ke zhotovení karnevalových čepic tvaru kužele pro 46 prvňáků, pokud obvod hlavy prvňáčka je 49 cm a výška čepice má být 33 cm. Na záhyby je nutné přidat 3% papíru?
- Těžiště tetraeder
Určete polohu těžiště soustavy čtyř hmotných bodů, které mají hmotnosti, m1, m2 = 2m1, m3 = 3M1 a m4 = 4m1, pokud leží ve vrcholech rovnoramenné tetraedru. (Ve všech případech mezi sousedními hmotnými body je vz
- Kužel
Vypočítej objem a povrch kužele, pokud průměr podstavy je d = 14 cm a strana kužele svírá s rovinou podstavy úhel 34°24'.
- Dopravní kužely
Čtyřicet stejných dopravních kuželů s průměrem podstavy d=3dm a výškou v=6dm máme natřít zvenčí oranžovou barvou (bez podstavy). Kolik korun zaplatíme za barvu, pokud na natření 1m² potřebujeme 50 cm³ barvy a 1l barvy stojí 80 Kč?
- Věžička 2
Věžička má půdorys tvaru čtverce s délkou strany 5m. Střecha věžičky má tvar pravidelného čtyřbokého jehlanu (bez podstavy) s výškou 8m. Při rekonstrukci se bude střecha pokrývat novými taškami. Na 1 m² se spotřebuje 11 tašek. Na jedné paletě je uskladněn
- Dřevená 3
Dřevená deska dlouhá 2,5m má pruřez tvaru pravidelného lichobežníku jehož rovnobežné strany májí delku 1,2dm a 8cm vyška lichobežníka je 3cm. Vypočtete: a) povrch desky pro vypočet spotřeby mořidla b) hmotnost desky je-li hustota dřeva je 600kg/m³ c) koli
- Věžička
Věžička má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou délky 0,8 m. Výška věžičky je 1,2 m. Kolik metrů čtverečných je potřeba na její pokrytí, počítáne-li na odpad 10% plechu navíc.
- Kvádr 68
Kvádr má tělesovou úhlopříčku u=25 cm a strana b je oproti straně a o třetinu delší. Jaký je objem kvádru?
- Na louce
Na louce přistála kosmická loď ve tvaru koule o průměru 6 m. Aby nepoutala pozornost, zakryli ji marťanci střechou ve tvaru pravidelného kužele. Jak vysoká bude tato střecha, aby spotřeba krytiny byla minimální?
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.