MO Z6–I–3 2018

Na obrázku sú naznačené dva rady šesťuholníkových políčok, ktoré doprava pokračujú bez obmedzenia. Do každého políčka doplňte jedno kladné celé číslo tak, aby súčin čísel v ľubovoľných troch navzájom susediacich políčkach bol 2018. Určte číslo, ktoré bude v 2019-tom políčku v hornom rade.

Správny výsledok:

x =  1009

Riešenie:

h:2,1,1009,2,1,1009, d:1,1009,2,1,1009,2,  h(1,4,7,..3k+1)=2 h(2,5,8,..3k+2)=1 h(3,6,9,..3k+3)=1009   2019=3 673+0 h(2019)=h(3) x=h(3) x=1009



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 4 komentáre:
#
Vera
Nechapem vysvetleniu

#
Heňulienka
do jedneho 6-uholníka ide 1009?
alebo 10 do jedneho a 09 do druheho?

#
Žiak
videl som tuto ulohu na papiery ... zo zadania my nebolo jasne ze susediace mozu byt len policka v ramci jedneho riadku ...

#
Dr Math
... 1009 je odpoved na otazku - "Určte číslo, ktoré bude v 2019-tom políčku"

avatar









Tipy na súvisiace online kalkulačky
Chcete previesť delenie prirodzených čísel - zistiť podiel a zvyšok?

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2

Ďaľšie podobné príklady a úlohy:

  • MO Z6-6-1
    kruhy_1 Do prázdnych polí v nasledujúcom obrázku doplňte celé čísla väčšie ako 1 tak, aby v každom tmavšom políčku bol súčin čísel zo susedných svetlejších políčok: Aké je číslo je v strede?
  • Rok 2018
    new_year Súčin troch kladných čísel je 2018. Ktoré sú to čísla?
  • Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka
  • Z6 – I – 6 MO 2019
    numbers_1 Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Medzi
  • C – I – 6 MO 2018
    numbers_49 Nájdite všetky trojciferné čísla n s tromi rôznymi nenulovými ciframi, ktoré sú deliteľné súčtom všetkých troch dvojciferných čísel, ktoré dostaneme, keď v pôvodnom čísle vyškrtneme vždy jednu cifru.
  • Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné
  • Osemsten súčet
    8sten Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré
  • Deliteľnosť
    divisibility Je číslo 22388 deliteľné (bezo zvyšku) číslom 4?
  • Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
  • MO B 2019 - uloha 2
    olympics Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
  • Z5–I–4 MO 2019
    2019 Vojto začal vypisovať do zošita číslo terajšieho školského roku 2019202020192020. . . A tak pokračoval stále ďalej. Keď napísal 2020 cifier, prestalo ho to baviť. Koľko tak napísal dvojok?
  • Šťastný deň
    calendar_1 Číslo dňa je poradové číslo daného dňa v príslušnom mesiaci (teda napr. číslo dňa 5. augusta 2016 je 5). Ciferný súčet dňa je súčet hodnôt všetkých cifier v dátume tohto dňa (teda napr. ciferný súčet dňa 5. augusta 2016 je 5+8+2+0+1+6 = 22). Šťastný deň j
  • Z9 – I – 5 MO 2018
    kruhy_mo Peter a Ivan vytvárali dekorácie z navzájom zhodných bielych kruhov. Peter použil štyri kruhy, ktoré položil tak, že sa každý dotýkal dvoch iných kruhov. Medzi ne potom vložil iný kruh, ktorý sa dotýkal všetkých štyroch bielych kruhov, a ten vyfarbil červ
  • MO 2019 Z9–I–5
    olympics Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka
  • C–I–4 MO 2017
    nahoda Určte najväčšie celé číslo n, pri ktorom možno štvorcovú tabuľku n × n zaplniť prirodzenými číslami od 1 po n2 tak, aby v každej jej štvorcovej časti 3 × 3 bola zapísaná aspoň jedna druhá mocnina celého čísla
  • Z6–I–5 MO 2019
    krize Útvar na obrázku vznikol tak, že z veľkého kríža bol vystrihnutý malý kríž. Každý z týchto krížov môže byť zložený z piatich zhodných štvorcov, pričom strany malých štvorcov sú polovičné vzhľadom na strany veľkých štvorcov. Obsah sivého útvaru je 45 cm2.
  • MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami.