MO Z8-I-2 2012

Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.

Správny výsledok:

X =  528

Riešenie:

X=528 p=5282=264  x1=p/3=264/3=88 x2=5283/4=44 x3=5284/11=12  x5=p/7=264/7=264737.7143 264=5+37 7



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 1 komentár:
#
Dr Math
Ak je polovica čísla deliteľná tromi, tak číslo musí byť deliteľné číslami 2 a 3 súčasne. Z podobných dôvodov musí byť deliteľné aj číslami 3 a 4 a tiež číslami 4 a 11. Najmenší spoločný násobok všetkých týchto čísel je súčin 3 · 4 · 11 = 132; hľadané číslo musí byť násobkom čísla 132. Polovica hľadaného čísla je teda násobkom čísla 66, zostáva už len preskúmať zvyšok po delení siedmimi:

polovica hľadaného čísla ; zvyšok po delení siedmimi
66 3
132 6
198 2
264 5
Najmenší násobok čísla 66, ktorý po delení siedmimi dáva zvyšok 5, je 264. Hľadané číslo je teda 2 · 264 = 528.

avatar










 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2

Ďaľšie podobné príklady a úlohy:

  • MO 2019 Z9–I–5
    olympics Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka
  • Ovce
    ships Pastier pásol ovce. Turisti sa ho pýtali, koľko ich má. Pastier povedal: „ Je ich menej ako 500. Keby som ich zoradil do štvorradu tri by mi ostali. Keby do päťradu ostali by mi štyri a ak do šesť radu, ostane ich 5. Môžem ich však zoradiť do sedem radu.
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
  • Nájdi 7
    prime_7 Nájdi najväčšie trojciferné číslo, ktoré pri delení tromi dáva zvyšok 1, pri delení štyrmi dáva zvyšok 2, pri delení piatimi dáva zvyšok 3 a pri delení šiestimi dáva zvyšok 4.
  • Z9-I-4
    numbers_30 Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a dev
  • Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  • Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné
  • MO B 2019 - uloha 2
    olympics Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
  • Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dv
  • MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami.
  • Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  • MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  • Z6 – I – 6 MO 2019
    numbers_1 Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Medzi
  • Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné č
  • MO C–I–1 2018
    numbers_49 Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
  • Snehulienka 2019 MO Z7
    snehulienka Snehulienka so siedmimi trpaslíkmi nazbierali šišky na táborák. Snehulienka povedala, že počet všetkých šišiek je číslo deliteľné dvoma. Prvý trpaslík prehlásil, že je to číslo deliteľné tromi, druhý trpaslík povedal, že je to číslo deliteľné štyrmi, tret
  • Zvyšok
    numbers2_35 A je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 6 zvyšok 1. B je ľubovoľné prirodzené číslo, ktoré dáva pri delení číslom 3 zvyšok 2. Aký zvyšok dáva pri delení tromi súčin čísel A. B?