Na papieri
Na papieri bolo napísaných niekoľko kladných celých čísel. Miška si pamätala iba to, že každé číslo bolo polovicou súčtu všetkých ostatných čísel. Koľko čísel mohlo byť napísaných na papieri?
Správna odpoveď:

Zobrazujem 1 komentár:
Žiak
Dobrý deň,
nemáte tu správne riešenie. Výsledok má byť 3 nie 2:
Vieme, že ktorékoľvek číslo na papieri sa rovná polovici súčtu všetkých zvyšných čísel. Z čoho vyplýva, že každé, číslo sa rovná tretine súčtu všetkých čísel na papieri. Teraz si ukážeme prečo. Súčet všetkých čísel na papieri si označíme ss a vyberieme si dve ľubovoľné čísla z papiera budú to a a b. Potom platí:
a = s-a /2
2a = s -a
3a = s
a = s/3 (1)
b = s-b/2
2b = s-b
3b = s
b = s/3 (2)
Vidíme, že aj v rovnici (1) aj v rovnici (2) máme na pravej strane s/3 . Keďže sa rovnajú práve strany týchto rovníc, tak sa rovnajú aj ich ľavé strany a teda musí platiť, že a=b.
Keďže sme si zobrali dve ľubovoľné čísla a zistili sme, že sa rovnajú, tak sa musia rovnať všetky čísla napísané na papieri.
Teda vieme, že na papieri máme nn rovnakých čísel s nejakou hodnotou xx. Potom súčet všetkých týchto čísel je n . x. A keďže je každé číslo polovicou súčtu ostatných čísel, tak platí:
x = s-x /2
x = n. x -x /2
2x = n . x -x
3x = n . x
Keďže vieme, že x je celé kladné číslo, tak ním môžeme vydeliť (lebo sa nerovná 0).
n = 3
Vidíme, že jediná možnosť, kedy by nám podmienka zo zadania sedela je, keď budeme mať na papieri napísane 3 rovnaké čísla.
nemáte tu správne riešenie. Výsledok má byť 3 nie 2:
Vieme, že ktorékoľvek číslo na papieri sa rovná polovici súčtu všetkých zvyšných čísel. Z čoho vyplýva, že každé, číslo sa rovná tretine súčtu všetkých čísel na papieri. Teraz si ukážeme prečo. Súčet všetkých čísel na papieri si označíme ss a vyberieme si dve ľubovoľné čísla z papiera budú to a a b. Potom platí:
a = s-a /2
2a = s -a
3a = s
a = s/3 (1)
b = s-b/2
2b = s-b
3b = s
b = s/3 (2)
Vidíme, že aj v rovnici (1) aj v rovnici (2) máme na pravej strane s/3 . Keďže sa rovnajú práve strany týchto rovníc, tak sa rovnajú aj ich ľavé strany a teda musí platiť, že a=b.
Keďže sme si zobrali dve ľubovoľné čísla a zistili sme, že sa rovnajú, tak sa musia rovnať všetky čísla napísané na papieri.
Teda vieme, že na papieri máme nn rovnakých čísel s nejakou hodnotou xx. Potom súčet všetkých týchto čísel je n . x. A keďže je každé číslo polovicou súčtu ostatných čísel, tak platí:
x = s-x /2
x = n. x -x /2
2x = n . x -x
3x = n . x
Keďže vieme, že x je celé kladné číslo, tak ním môžeme vydeliť (lebo sa nerovná 0).
n = 3
Vidíme, že jediná možnosť, kedy by nám podmienka zo zadania sedela je, keď budeme mať na papieri napísane 3 rovnaké čísla.
Tipy na súvisiace online kalkulačky
Hľadáte pomoc s výpočtom aritmetického priemeru?
Hľadáte štatistickú kalkulačku?
Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?
Hľadáte štatistickú kalkulačku?
Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Súvisiace a podobné príklady:
- V škole
Na tabuli je napísaných päť navzájom rôznych kladných čísel. Určte najväčší možný počet dvojíc z nich vytvorených, v ktorých je súčet oboch prvkov rovný jednému z piatich čísel napísaných na tabuli.
- Rozdiel 20
Rozdiel dvoch kladných celých čísel je 25. Jedno číslo je 59. Aké je druhé číslo?
- Dárius
Dárius povedal Milošovi: Myslím si číslo. Keď ho umocním na jednu štvtinu a následne vynásobim číslom 3, dostanem jeho druhú odmocninu. Určte neznáme číslo, ktoré je vačšie ako nula a patrí do množiny celých kladných čísel.
- Koláčiky
Na miske bolo niekoľko koláčikov. Janka zjedla tretinu z nich, Danka zjedla štvrtinu z tých koláčikov, ktoré zostali. a) Akú časť (z pôvodného počtu) koláčikov zjedla Danka? b) Najmenej koľko koláčikov mohlo byť (pôvodne) na miske?
- Každý 3
Každý žiak deviatej triedy sa zúčastnil aspoň jednej z troch exkurzií. Na každej exkurzii mohlo byť vždy 15 žiakov. 7 účastníkov prvej exkurzie sa zúčastnilo aj druhej, 8 účastníkov prvej a 5 účastníkov druhej exkurzie sa zúčastnilo aj tretej. 4 žiaci sa
- Hrnčeky
Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
- Nasledujúcich 66034
Je daných päť po sebe nasledujúcich prirodzených čísel. Ak prostredné číslo odrátam od súčtu štyroch ostatných, dostanem 21. Určite tieto čísla.
- Na taške
Na taške mám 5 číslicový kód, ktorý som zabudol. Pamätám si len to, že to bolo symetrické číslo a súčet jeho cifier bol 22. Napíšte všetky čísla, ktoré môžu byť kódom.
- Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
- Súčet dvoch prvočísel
Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
- Kolóna 2
Kolóna áut na hraničnom priechode bola dlhá 1km a 320m. Každé auto zaberalo priemere 6 metrov. Koľko áut mohlo byť v kolóne?
- Z9–I–1
Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
- Chovprodukt
Z chovproduktu (Zverimexu) vypredávali rybky z jedného akvária. Ondrej chcel polovicu všetkých rybiek, ale aby nemuseli žiadnu rybku rezať, dostal o polovicu rybky viac, ako požadoval. Matej si prial polovicu zvyšných rybiek, ale rovnako ako Ondrej dostal
- Obdĺžnik - kto má pravdu
Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto
- Pán Cuketa
Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
- Dostal
Dostal som 30 eur v 7 splátkach, pričom každá splátka bola v celých eurách. Koľkými spôsobmi to mohlo prebehnúť? Čo ak môžu byť splátky aj vo výške 0 eur, koľko bude možných riešení potom?
- Architekt
Architekt navrhuje dom. Chce, aby mala spálňa rozmery 8 stôp 4 stôp 7 stôp. Architekt zdvojnásobí všetky tri rozmery, aby vytvoril brloh. Znamená to, že brloh bude mať dvojnásobný objem ako spálňa? Najskôr vyhľadajte objem spálne. Vyriešiť na papieri. Zna