Cukríky

Danka a Janka si rozdelili balíček cukríkov v pomere 5:7. Janka dostala o 4 cukríky viac ako Danka. Koľko cukríkov bolo v balíčku?

Výsledok

x =  24

Riešenie:


7d = 5j
j = d+4
x = j+d

7d-5j = 0
d-j = -4
d+j-x = 0

d = 10
j = 14
x = 24

Vypočítané naším kalkulátorom sústavy lineárnych rovníc.








Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?

Ďaľšie podobné príklady:

  1. Pomaranče
    pomaranc_2 Mamka rozdelila svojim trom deťom pomaranče v pomere 6:5:4. Dvom deťom dala 45 pomarančov. Koľko bolo všetkých pomarančov?
  2. Višne
    visne Višne v miske môžu byť rozdelené rovnakým dielom medzi 8 alebo 10 alebo 11 detí. Koľko najmenej je v miske višní?
  3. Úsečky
    segments Úsečky dĺžok 67 cm a 3.1 dm máme rozdeliť na rovnaké diely tak, aby ich dĺžka v centimetroch bola vyjadrená celým číslom. Koľkými spôsobmi ich môžeme deliť?
  4. Traja 18
    gulky_9 Traja kamaráti mali na začiatku hry guľôčky v pomere 2:7:4. Mohli mať na konci hry rovnaký počet guľôčok? Zapíšte 0, ak nie, alebo zapíšte minimálny počet guľôčok ktoré spolu mali.
  5. Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  6. Práca a koláče
    eura_10 Jedna firma zamestnala študenta-vysokoškoláka na celý mesiac jún na farme tak, že mu platila 16 € spolu s celodennou stravou na jeden deň. Ak v daný deň nepracoval, musel zaplatiť 6 € za stravu. Koľko dní študent pracoval, ak za mesiac jún zarobil 348 € ?
  7. Hrnčeky
    hrnceky Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
  8. Ciferný súčet
    number_line_3 Ciferný súčet dvojciferného čísla je deväť. Keď čísla obrátime a vynásobíme pôvodným dvojciferným číslom, dostaneme číslo 2430. Aké je pôvodne dvojciferné číslo?
  9. Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  10. MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať
  11. Diofant 2
    1diofantos Je rovnica   ? riešiteľná na množine celých čísel Z?
  12. Vypočítajte 5
    rt_triangle_1 Vypočítajte dĺžky strán a uhly v pravouhlom trojuholníku. S=210, o=70.
  13. Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  14. MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  15. Pravouhlý trojuholník Alef
    r_triangle area pravouhlého trojuholníka je 294 cm2 a jeho prepona má dĺžku 35 cm. Aké sú dĺžky jeho odvesien?
  16. 3uholník obsah
    right_triangle_1 Vypočítajte obsah pravouhlého trojuholníka, ktorého dlhšia odvesna je o 6 dm kratšia ako prepona a o 3 dm dlhšia ako kratšia odvesna.
  17. Kvocient geometrickej
    geometricka-postupnost a1+a3=15 a1+a2+a3=21 Vypočítajte a1 a q(kvocient geometrickej postupnosti).