Delenie + úvaha - príklady a úlohy

  1. Z číslic
    numbers_1 Z číslic 1,2,3,4 vytvoríme dlhokánske číslo 123412341234. . . .. , ktoré bude mať 962 číslic. Je toto čislo delitelne číslom 6?
  2. V Kocúrkove - Z8-I-6 2019 MO
    mince_1 V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne a
  3. Na veky
    calendar 3 sestry majú dnes narodeniny pričom ich vek je v pomere 2:3:4. O 2 roky bude ich vek v pomere 5:7:9. Urč v akom pomere budú ich veky o 4 roky.
  4. Dedko MO Z5–I–5 2019
    jablone Dedko má v záhrade tri jablone a na nich spolu 39 jablk. Jablká rastú iba na ôsmich konároch: na jednej jabloni plodia dve konáre, na dvoch jabloniach plodia po tri konáre. Na rôznich konároch je rôzny počet jablk, ale na každej jabloni je rovnaký počet ja
  5. Rok 2020
    eq222 Štvormiestne číslo delené číslom 2020 má výsledok v tvare 1,**. (Nemôže byť v tvare 1,*0. ) Napíš všetky možnosti.
  6. Miško 3
    cukriky_2 Miško dostal taký počet cukríkov, že všetky cifry v tomto počte boli rovnaké. Dokážte, že vždy pokiaľ vie takýto počet cukríkov rozdeliť na 72 rovnakých kôpok, tak ich vie rozdeliť aj na 37 rovnakých kôpok. (Pozn. : cukríky nevieme rozlomiť)
  7. Z5–I–4 MO 2019
    2019 Vojto začal vypisovať do zošita číslo terajšieho školského roku 2019202020192020. . . A tak pokračoval stále ďalej. Keď napísal 2020 cifier, prestalo ho to baviť. Koľko tak napísal dvojok?
  8. Bdf tablet
    bdf Detektív Harry Thomson narazil na prekvapivú záhadu. Vrámci víkendovej akcie ním vyhliadnutý tablet zlacnel o 30%. Túto výhodnú kúpu odporučil aj svojmu priateľovi. Ten však prišiel do obchodu až v pondelok a tablet už bol o 30% drahší, no nestál rovnako a
  9. Nájdi 7
    prime_7 Nájdi najväčšie trojciferné číslo, ktoré pri delení tromi dáva zvyšok 1, pri delení štyrmi dáva zvyšok 2, pri delení piatimi dáva zvyšok 3 a pri delení šiestimi dáva zvyšok 4.
  10. 20 guliček
    gulky_14 Vo vrecúšku mame 20 guliček ktoré su očíslované od 1-20 Určite aká jar pravdepodobnosť toho, že z vrecúška vytiahnem guličku s číslom parným a menším ako 13.
  11. Dvaja plavci
    bazen2_23 Dvaja plavci spolu trénovali v malom bazéne. Plavec Šťuka prepláva bazén po dĺžke za 16 sekúnd, plavec Kaprík za 20 sekúnd. Obaja plavci naraz skočili do bazéna z toho istého okraja a 160 sekúnd plávali po dĺžke bazéna tam a späť, tam a späť, tam a späť a
  12. Kanec Vavrínec - matik
    kanec V Starom Lese rastú len bylinky s 5 a 7 listami. Keď kanec Vavrínec zbiera suroviny na bylinný mok, tak vždy otrhne celú bylinku a položí ju do košíka. Aký je najväčší počet listov, ktoré sa mu nikdy nepodarí mať v košíku presne? Ako by to vyzeralo, keby v
  13. Tri čísla
    dices2_9 Máme 3 rôzne nenulové čísla. Vytvoríme z nich všetky možné 3 ciferné čísla aby sa v každom čísle použili všetky 3 číslice. Všetky vytvorené čísla sčítame, dostaneme súčet 1554. Aké boli číslice?
  14. Podiel a zvyšok
    prime_5 Sú dané čísla C = 281, D = 201. Určite najvyššie prirodzené číslo S tak, aby podiely C:S, D:S boli so zvyškom 1,
  15. Kartičky 2
    cards_9 Tomáš mal rozdeliť medzi troch kamarátov 259 kartičiek s obrázkami futbalistov. Pričom každý nasledujúci kamarát mal dostať 2-krát viac kartičiek ako predchádzajúci. Koľko kartičiek dostal v poradí druhý kamarát?
  16. Prsty
    prsty Janka počíta na jednej ruke po jednom. Začína počítať od palca cez ukazovák, prostredník a prstenník, príde k malíčku a má číslo 5. Potom sa hned vracia k prstenníku (6), na prostredník (7), ukazovák (8), palec (9) a zase na ukazovák (10), prostredník (11)
  17. Zlaté prúty
    meter_20 V jednom kráľovstve sa po generácie dedili dva zlaté prúty. Avšak kráľ Emanuel mal troch synov, ktorí sa o nič nevedeli podeliť. Chcel im teda prelomením jedného prúta vyrobiť z dvoch prútov tri. Najmladší syn dostane najkratší prút, najstarší syn dostane.
  18. Po pravítku
    mravec Po pravítku dlhom 16 cm behá splašený mravec stálou rýchlosťou 1 cm za sekundu. Vždy po dobehnutí na koniec pravítka sa otočí a beží naspäť. Každá otočka mu trvá 1 sekundu. Behať začal od ľavého rohu. Popri koľkých číslach prebehne za 3 minúty?
  19. Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  20. Pyramída
    The_Great_Pyramid Koľko 50cm x 32cm x 30cm tehiel potrebujeme na postavenie 272m x 272m x 278m pyramídy?

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož ju a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .
Ide o to že chceme pomáhať, ale chodia nám upozornenia od organizátorov týchto súťaží, že pomáhame riešiteľom podvádzať. My sme sa snažili istiť vás ako horolezci, nie ťahať lanom na vrchol. Je pravda že hotové riešenie je už priveľká pomoc.

Správne riešenia súťažných úloh sa dozviete po skončení daného kola...