Bonbóny MO Z6-I-5 2017

V plechovce byly červené a zelené bonbóny. Čeněk snědl 2/5 všech červených bonbónů a Zuzka snědla 3/5 všech zelených bonbónů. Teď tvoří červené bonbóny 3/8 všech bonbónů v plechovce.

Kolik nejméně bonbónů mohlo být původně v plechovce?

Správná odpověď:

n =  35

Postup správného řešení:

c=5 k1 z=5 k2 c2=12/5=35=0.6 z2=13/5=25=0.4 c c2z z2+c c2=38 8 c c2=3 c2 c+3 z2 z c3=8 c23 c2=8 0.63 0.6=3 z3=3 z2=3 0.4=65=115=1.2 c3 c=z3 z 3c=6/5 z 15c=6z 15=35 6=23 NSN(15,6)=235=30  k3=NSN(15,6)=30 k1=2 k2=5 c=2 5=10 z=5 5=25  n=c+z=10+25=35  s1=3/8=38=0.375 c4=cc 2/5=1010 2/5=6 z4=zz 3/5=2525 3/5=10 s4=c4/(c4+z4)=6/(6+10)=38=0.375 s1=s4



Našel si chybu či nepřesnost? Klidně nám ji napiš.




Nejoblíbenější komentáře:
#
Žák
Dokážete to řešení napsat slovy,protož takhle tomu moc nerozumím ;)

3 roky  6 Likes
Zobrazuji 21 komentářů:
#
Žák
Dokážete to řešení napsat slovy,protož takhle tomu moc nerozumím ;)

3 roky  6 Likes
#
Žák
Bohužel jsem to taky nepochopila, prosím o vysvětlení.
Díky Hanka

3 roky  3 Likes
#
Žák
Co prosím znamená 5k2

#
Dr Math
k2 je nezname prirodzene cislo . 5k2 je jeho 5-nasobek...

3 roky  1 Like
#
Žák
Co označuje c,c2,c3,z,z2,z3,k1,k2,k3?

3 roky  2 Likes
#
Žák
Já nevím co je c3 a z3

3 roky  2 Likes
#
Tomáš
Nejde mi přidat komentář.

#
Dr Math
Tomas pise  - Tak za prvé:
Zadání není jednoznačné. (komentar hackmath - zadani MO sorry nad tim zadanim sedeli jine kapacity nez my laici:)

A za druhé:
Výsledek 35 je špatně. Správně je 40.

---------------------------------------------

Správné řešení:

Ad 1:

Třetí věta: "Teď tvoří červené bonbóny 3/8 všech bonbónù v plechovce" je neúplná, protože vede ke dvěma možným závěrùm. Buď myšleno jako "ze všech bonbónù, které nyní v plechovce zbyly (po odebrání)" nebo "ze všech bonbónù, které (před odebráním) v plechovce pùvodně byly".
Obě možnosti jsou spočítatelné, ale vedou k rozdílnému výsledku. Pokud se dobře pamatuji na správné zadání, myšleno je "ze všech bonbónù, které (před odebráním) v plechovce pùvodně byly".

S touto premisou ad 2:

Výsledek 35 je špatně už jen proto, že není beze zbytku dělitelný 8. Připomeňme si větu: "Teď tvoří červené bonbóny 3/8 ze všech bonbónù, které (před odebráním) v plechovce pùvodně byly". Tento předpoklad splňují pouze čísla 8, 16, 24, 32.

Počet červených bonbónù --> x (číslo neznáme, ale víme, že je dělitelné 5 beze zbytku)
Počet zelených bonbónù --> y (opět číslo neznáme, ale víme, že je dělitelné 5 beze zbytku)

Máme rovnici:
z = x + y
kde "z" je nějaké nejmenší celé číslo (počet všech bonbónù pùvodně v plechovce), na které máme dojít, ale zároveň víme, že je dělitelné 8 beze zbytku.

(Vsuvka: už zde je patrné, že řešením mùže být jedině číslo z řady 40, 80, 120, 160. Pokud jsou čísla "x" a "y" dělitelná beze zbytku 5 a zároveň jejich součet je beze zbytku dělitelný 8, tak jejich součet musí být dělitelný jak 5, tak 8 beze zbytku. A tomu odpovídají pouze čísla z uvedené řady.)

Dále máme rovnici:
3/5 x = 3/8 (x + y)
která nám vyjadřuje větu "Teď tvoří červené bonbóny 3/8 ze všech bonbónù, které (před odebráním) v plechovce pùvodně byly".
3/5 x --> znamená počet červených bonbónù zbylých v plechovce po odebrání 2/5 červených bonbónù.
3/8 (x + y) --> znamená 3/8 všech bonbónù v plechovce, které tam pùvodně byly.

řešme rovnici:
3/5 x = 3/8 (x + y)
3/5 x = 3/8 x + 3/8 y
24 x = 15 x + 15 y
9 x = 15 y
3 x = 5 y
=======
(x = 5/3 y)

Víme, že "x" a "y" je dělitelné 5 beze zbytku, takže to mohou být pouze čísla 5, 10, 15. tím z předchozí rovnice odvodíme:
Pokud je y = 5 --> pak x = 8,3333. (špatně)
Pokud je y = 10 --> pak x = 16,6666. (špatně)
Pokud je y = 15 --> pak x = 25 (sedí) --> obě čísla jsou dělitelná 5 beze zbytku.

Takže počet červených bonbónù je:
x = 25
a počet zelených bonbónù je:
y = 15

--------------------------------------
Zkouška:
3/5 x = 3/8 (x + y)
3/5 * 25 = 3/8 (25+15)
3/5 * 25 = 3/8 *40
3 * (25/5) = 3 * (40/8)
3 * 5 = 3 * 5
15 = 15
======
A to je správně.
Takže námi hledané číslo je:
z = x + y
z = 25 + 15
z = 40
=====

A je zároveň nejmenší možné, protože pokud bude "y" 5 nebo 10 (což jsou, jak jsme si ukázali, jediné možné menší alternativy) tak "x" bude necelé číslo, a navíc nebude dělitelné 5. (Nebo jinak: 40 je nejmenší možná alternativa z možné řady výsledkù 40, 80, 120.)

#
Dr Math
Tomas poslal linku na jeho zpusob reseni:) nicmene

pri cervenych c=10  a zelenych z=25 . Dokopy cili 35. Kdybys spravil zkousku spravnosti j(poslednich 5 radku reseni) ako my, zjistil bys ze snedl 4 cervene a ostalo 6 cervenych a 15 zelenych a ostalo 10 zelenych. cize ostalo 6/(6+10) = 6 / 16 = 3/8 vsech bonbonu...

Tak jak mohlo vyjst 40 bonbonu a ne 35 :D ?!?

3 roky  1 Like
#
Dr Math
Repost od Tomas:

Ahoj jeste jednou.

Tak jsem se na to kukl, a dosel jsem na to, proc se rozchazime:

---

Jak jsem psal, pocital jsem dale s premisou "ze vsech bonbonu, ktere (pred odebranim) v plechovce puvodne byly". S timto zakladem vychazi celkovy pocet 40.

Ted jsem si to prosel poradne a zjistil jsem, ze ty jsi pocital s druhou premisou, a to: "ze vsech bonbonu, ktere nyni v plechovce zbyly (po odebrani)", kde skutecne vysledek vyjde 35. (Taky jsem avizoval, že to vede k rozdilnym vysledkum, ale blbec jsem si nespocital tu druhou moznost :D coz je moje chyba.)

Pouzita rovnice by tedy byla:
3/5 x = 3/8 (3/5 x + 2/5 y) --- pocet cervenych bonbonu, ktere zustaly = 3/8 zbytku (zustatek cervenych + zustatek zelenych)

Nicmene z toho plyne krasne ponauceni (a to nemyslim na tebe Dr Math): "Jednoznaènost zadani vede k jednoznacnemu vysledku."

Great challenge, po dlouhe dobe jsem si pekne zapocital. Moc dik.

3 roky  1 Like
#
@user
Výsledek je 40. Z toho důvodu , ze 40 je nejnizsi možné číslo, které lze rozdělit jak na pětiny tak i osminy (aby bylo výsledkem cele číslo ( rozuměj cely bonbon))

3 roky  1 Like
#
Dr Math
Tym lidem co stale tu pisu o 40 jako o řešení třeba jen vzkázat že ať si přečte zadani jeste jednou, otestujuci ci 35 je správní řešení a nebe 40 je spravne reseni ... 35 je dělitelné 5. Proc by proboha melo byt dělitele 8? dělitelné 8 ma byt novy stav bonbonu 16 a ta je dělitelná 8 (a nemusi byt 5).

Odteď smažu kazdy nesmysel o 40: D Zadání je jednoznačné, Tomas se mýlil hned v prvni úvahu ... když napsal "Zadání není jednoznačné" .... a třetí věta: "Teď tvoří červené bonbóny 3/8 všech bonbonu v plechovce" je přece to ze zůstalo 6 červených z 16 celkových bonbonu ... Tam se nepočítej ti snědené ... ti jsou v břiše ne v plechovce...

3 roky  1 Like
#
Žák
Co znamená NSN?

#
Dr Math
NSN = nejmensi spolecni nasobek, ucivo cca 6 rocniku ZS

3 roky  1 Like
#
Žák
Ja nerozumim tomu resenim

#
Žák
Prosim vysvetlete mi to

#
Žák
Co znamena c

#
Dr Math
c =cervene (rude), z = zelene bonbony, pocet

#
Matěj
Prosím pro cca kolikátý ročník je toto úloha?
díky m.

#
Dr Math
6 rocnik matematicka olympiada...

#
Žák
Dobrý den.  Jsem student 5 ročníku a koukal jsem se i na težší úlohy. Jen bych se chtěl zeptat jak zjistím, že červených je 10 a zelených 25? Vím, že je to možná hloupá otázka a  vy budete nade mnou kroutit halvou, ale byl bych rád kdybyste mi někdo ukázal postup jak dostat ta čísla.

avatar







Tipy na související online kalkulačky
Chceš si vypočítat nejmenší společný násobek dvou nebo více čísel?
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?

Související a podobné příklady:

  • MO 2019 Z8–I–4
    olympics Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  • Číslo dne
    calendar Číslo dne je pořadové číslo daného dne v příslušném měsíci (tedy např. číslo dne 5. srpna 2016 je 5). Ciferný součet dne je součet hodnot všech cifer v datu tohoto dne (tedy např. ciferný součet dne 5. srpna 2016 je 5 + 8 + 2 + 0 + 1 + 6 = 22). Šťastný de
  • Ovce 3
    sheep Kuba se domluvil s bačou, že se mu bude starat o ovce. Bača Kubovi slíbil, že po roce služby dostane dvacet zlatých a k tomu jednu ovci. Jenže Kuba dal výpověď, právě když uplynul sedmý měsíc služby. I tak ho Bača spravedlivě odměnil a zaplatil mu pět zla
  • Z9-I-4 2018 Hoteliér
    stolicky_skola_8 Hoteliér chtěl vybavit jídelnu novými židlemi. V katalogu si vybral typ židle. Až při zadávání objednávky se od výrobce dozvěděl, že v rámci slevové akce nabízejí každou čtvrtou židli za poloviční cenu a že tedy oproti plánu může ušetřit za sedm a půl žid
  • Číselna osa
    osa V kocourkovské škole používají zvláštní číselnou osu. Vzdálenost mezi čísly 1 a 2 je 1 cm, vzdálenost mezi čísly 2 a 3 je 3 cm, mezi čísly 3 a 4 je 5 cm, a tak dále, vzdálenost mezi následující dvojicí přirozenými čísly se vždy zvètší o 2 cm. Mezi kterými
  • Pážata MO Z6-I-4
    coins Jednou si král zavolal všechna svá pážata a postavil je do řady. Prvnímu pážeti dal určitý počet dukátů, druhému dal o dva dukáty méně, třetímu opět o dva dukáty méně a tak dále. Když došel k poslednímu pážeti, dal mu příslušný počet dukátů, otočil se a o
  • Z7–I–4 2018 MO Betka
    gears_mo Karel si hrál s ozubenými koly, která byla sestavena do soukolí. Když zatočil jedním kolem, točila se všechna ostatní. První kolo mělo 32 a druhé 24 zubů. Když se třetí kolo otočilo (je uprostřed soukolí) přesně osmkrát, druhé kolo udělalo pět otáček a čá
  • MO Z8–I–3 - 2017 - Adélka
    numbers2 Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
  • MO Z8-I-2 2012
    numbers Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
  • Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  • Z9 – I – 6 2018 MO
    numbers2 Přirozené číslo N nazveme bombastické, pokud neobsahuje ve svém zápise žádnou nulu a pokud žádné menší přirozené číslo nemá stejný součin číslic jako číslo N. Karel se nejprve zajímal o bombastická prvočísla a tvrdil, že jich není mnoho. Vypište všechna d
  • MO Z6–I–3 2018
    moz6 Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
  • MO C–I–1 2018
    numbers Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
  • Myšky - Z9–I–5
    Mysky Myšky si postavily podzemní domeček sestávající z komůrek a tunýlků: • každý tunýlek vede z komůrky do komůrky (tzn. žádný není slepý), • z každé komůrky vedou právě tři tunýlky do tří různých komůrek, • z každé komůrky se lze tunýlky dostat do kterékoli
  • Sklepy
    Spider-and-Fly V prvním sklepě je víc much než pavouků, ve druhém naopak. V každém sklepě měli mouchy a pavouci dohromady 100 nohou. Určete kolik mohlo být much a pavouků v prvním a kolik ve druhém sklepě. PS. Nám stačí, když napíšete kolik rěšení má tenhle úkol.
  • Z9-I-4
    numbers Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  • Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?