Maják
Marcel (bod J) leží v trávě a vidí v zákrytu vrchol stanu (bod T) a za ním vrchol majáku (P). |TT'| = 1,2m, |PP'| = 36m, |JT'| = 5m. Marcel leží 15 m odbrehu moře (M). Vypočítejte vzdálenost majáku od břehu moře - |P'M| .
Správná odpověď:

Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Chcete proměnit jednotku délky?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Chcete proměnit jednotku délky?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Vzdálenosti 5148
Ve vzdálenosti 10 m od břehu řeky naměřili základnu AB = 50 m rovnoběžně s břehem. Bod C na druhém břehu řeky je vidět z bodu A pod úhlem 32°30' az bodu B pod úhlem 42°15'. Vypočítejte šířku řeky.
- Maják
Muž, 180 cm vysoký, kráčí po nábřeží přímo k majáku. Mužův stín, způsobený světlem majáku, je na začátku dlouhý 5,4 m. Když se muž přiblíží k majáku o 90 metrů, zkrátí se jeho stín o 3 metry. Jak vysoký je maják a jak daleko je muž od něho vzdálený?
- Rovnoběžné tětivy
V kružnici s r = 26 cm jsou narýsované 2 rovnoběžné tětivy. Jedna tětiva má délku t1 = 48 cm a druhá má délku t2 = 20cm, přičemž střed leží mezi nimi. Vypočítejte vzdálenost dvou tětiv.
- Abs a vektory
Jsou dány vektory a=(4,2), b=(-2,1). Vypočítejte: a) |a+b|, b) |a|+|b|, c) |a-b|, d) |a|-|b|.
- Komín 5
Jak vysoký je komín teplárny, stojí-li pozorovatel od paty komínu 26 m a vidí-li vrchol komínu pod úhlem 67°.
- Výška domu
Z vyhlídky na kostelní věži ve výšce 65m je vidět vrchol domu pod hloubkovým úhlem alfa = 45° a jeho spodek pod hloubkovým úhlem beta = 58°. Vypočtěte výšku domu a jeho vzdálenost od kostela.
- Vzdálenost
Vypočítejte vzdálenost bodu A [0, 2] od přímky procházející body B [9, 5] a C [1, -1].
- Západ-jih
Pozoroval stojící západně od věže vidí její vrchol pod výškovým úhlem 45 stupňů. Poté, co se posune o 50 metrů na jih, vidí její vrchol pod výškovým úhlem 30 stupňů. Jak vysoká je věž?
- Most z balonu
Z balonu, který je 92 m nad mostem je vidět jeden konec mostu v hloubkovém úhlu 37° a druhý konec 30°30´. Vypočítejte délku mostu.
- Člověk 7838
Člověk vysoký 1,65m vrhá stín dluhy 1,25m. Jak vysoký je strom jehož stín je dluhy 2,58 m?
- Vrcholy trojúhelníku
Ukažte, že body D (2,1), E (4,0), F (5,7) jsou vrcholy pravoúhlého trojúhelníku.
- V rovnoramenném trojúhelníku
V rovnoramenném trojúhelníku ABC se základnou AB; A [-3,4]; B [1,6] leží vrchol C na přímce 5x - 6y - 16 = 0. Vypočítejte souřadnice vrcholu C.
- Je dán 13
Je dán pravidelný čtyřboký hranol ABCDEFGH s podstavnou hranou AB délky 8 cm a výškou 6 cm. Bod M je střed hrany AE. Určete vzdálenost bodu M od roviny BDH.
- Výška trojúhelníku
Vrcholy rovnostranného trojúhelníku leží na 3 různých rovnoběžkách. Prostřední je od krajních vzdálena 5 m, resp. 3 m. Vypočítejte výšku tohoto trojúhelníku.
- Vitrínka
Do skříňky třeba umístit skleněnou poličku ve výšce 1m od spodku vitríny. Jak velkou polici do ní v této výši umístíme? Vitrínka je pravoúhlý trojúhelník s odvěsnami 2 m a 2,5 m.
- Je dán 15
Je dán koncový bod vektoru, který je umístěn v počátku kartézské soustavy Oxy. Určete souřadnice vektoru, jeho velikost a načrtněte jej: P[3,4] ; Q[-2,7] ; S[-5,-2] . .. tj. Vektory PO, QO, SO
- Určete
Určete obsah trojúhelníku daného přímkou -7x + 7y + 63 = 0 a souřadnicovými osy x a y.