Suchohřiby

Paľo má 8 suchohřibů a o 1/2 méně dubáků, kozáků má 5x více než masliaků (klouzek obecný). Kozákov a masliaků (klouzků) má spolu 3x více než suchohřibů. Kolik má spolu všech hub. A kolik je masliaků a kolik kozáků?

Výsledek

x =  36
m =  4
k =  20

Řešení:


s = 8
d = s - s/2
k = 5 m
k+m= 3s
x = s+d+k+m

s = 8
2d-s = 0
k-5m = 0
k+m-3s = 0
d+k+m+s-x = 0

d = 4
k = 20
m = 4
s = 8
x = 36

Vypočtené naším kalkulátorem soustavy lineárních rovnic.








Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Máte soustavu rovnic a hledáte kalkulačku soustavy lineárních rovnic?

Další podobné příklady:

  1. Divadlo
    divadlo_1 Divadelního představení se zúčastnilo 480 divaků. Žen bylo v hledišti o 40 více nez mužů a deti o 60 méňe než byla polovina dospělých divaků. Kolik žen, mužů a deti se zúčastnilo divadelního představení?
  2. Branky
    hokej_2 čtyři hokejová mužstva nastřílela v turnaji 337 branek. druhé družstvo dalo o 16 branek méně než první , třetí o 17 méně než druhé a čtvrté o 30 branek méně než druhé . Kolik branek dalo každé mužstvo?
  3. Farma2
    pecene_kure Na farmě chovají krocany, husy, slepice a kuřata. Všech je 400. Krocanů a hus je 150. Žádná slepice nevyseděla více než jedno kuře, některé nevyseděly žádné. Polovina z nich je zároveň čtvrtinou z kuřat. Když od krocanů odečteme 15, dostaneme 75. Kolik je
  4. Bonbóny
    bonbon Dá-li Alena Lence 3 bonbóny, bude mít stále ještě o 1 bonbón více. Dá-li Lenka Aleně 1 bonbón, bude jich mít Alena dvakrát vice než Lenka. Kolik bonbónů má každá z nich?
  5. Kino 6
    cinema2_3 Kino navštivilo celkem za 3 dny 890 osob. 2. den to bylo 3x vice než 1. den a 3.den navštivilo kino o 50 osob vice nez 2.den. Kolik osob navštivilo kino v jednotlive dny?
  6. SOŠ 2
    tablo_1 Na střední odborné škole si vedou statistiky o počtech žáků, ketří si k nim podali přihlášku. V letech 2014 a 2016 se do školy hlásilo celkem 1435 žáků. V roce 2015 se hlásilo o 70 žáků více než v roce 2014 a v roce 2016 se hlásilo dokonce 1,5krát více žá
  7. Eva a Jana
    huby_2 Eva a Jana nasbírali dohromady 114 hub. Eva našla dvakrát více než Jana. Kolik našla každá z nich?
  8. Knoflíky
    knofliky Na košili je 6 knoflíků, na halence 4 knoflíky. Všech knoflíků je 176. Košilí a halenek je dohromady 36. Kolik je košil a kolik halenek?
  9. Koruny
    penize_1.JPG Žáci čtyř ročníků uspořili dohromady n=45000 korun. Z toho první ročník uspořil jednu třetinu, druhý jednu třetinu zbytku, třetí dvě pětiny dalšího zbytku a čtvrtý zbývající část. Kolik korun uspořil každý ročník ?
  10. Vstupenky
    tickets Vstupenky do zoo stojí 4 dolary pro děti, 5 USD pro teenagery, 6 dolarů pro dospělé. V sezóně, 1200 lidí přijde do zoo každý den. V určitý den, celkový příjem v zoo bylo 5300 dolarů. Na každých 3 teenagery 8 dětí prišlo do zoo. Kolik teenegerov (t=?), dět
  11. Jablka 3
    jablka_10 Babička měla jablka, když jich sedm dala dědovi, měli oba stejně. když dal děda pět jablek babičce, měla jich 3x víc než děda. Kolik jablek měl každý původně?
  12. Góly
    lopta_2 Jarda dal o 18 gólů víc než Karel. Celkem dali 86 gólů. Kolik gólů dal Jarda a kolik Karel?
  13. Sazenice
    jablone Podél silnice bylo vysazeno 250 stromků dvojího druhu. Třešní po 60 Kč za kus a jabloní po 50 Kč za kus. Celá výsadba stála 12800 Kč. Kolik bylo sazenic třešní a kolik jabloní?
  14. Myška
    mouses myška hryzka má 27 krychliček, které k sobě poskládala do velké krychle. Potom na každé straně vyhryzala prostřední krychličku a ještě krychličku uprostřed. Myška má 4 děti. potom podélně krychly rozřeše. Kolik krychlí a jaký tvar dostanou 4 myšky?
  15. Dve čísla
    maxwells-equation Mám dvě čísla. Jejich součet je 140. Jedna pětina prvního čísla se rovná polovině druhého čísla. Určete tyto neznámé čísla.
  16. Rovnica
    p1110617 Vyřešte rovnice: 6(x+7)+4(y-5)=12 2(x+y)-3(-2x+4y)=-44
  17. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?