Pythagorova věta - slovní úlohy a příklady - strana 42 z 72
Počet nalezených příkladů: 1439
- Navigace lodě  Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr. Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr.
- Z=-√2-√2i 74744  Nechť komplexní číslo z=-√2-√2i, kde i² = -1. Najděte |z|, arg(z), z* (kde * označuje komplexní konjugát) a (1/z). V případě potřeby napište své odpovědi ve tvaru a + i b, kde ai b jsou reálná čísla. Označte polohy čísel z, z* a (1/z) na Argandově diagram Nechť komplexní číslo z=-√2-√2i, kde i² = -1. Najděte |z|, arg(z), z* (kde * označuje komplexní konjugát) a (1/z). V případě potřeby napište své odpovědi ve tvaru a + i b, kde ai b jsou reálná čísla. Označte polohy čísel z, z* a (1/z) na Argandově diagram
- Násep  Na vodorovné rovině má být vybudován násep vysoký 7,5m, šířka horní plochy náspu je 2,9 m, sklon svahu je 35°. Jaká bude dolní šířka náspu? Na vodorovné rovině má být vybudován násep vysoký 7,5m, šířka horní plochy náspu je 2,9 m, sklon svahu je 35°. Jaká bude dolní šířka náspu?
- Pravoúhly trojúhelník 9  V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C je dáno : a=17cm, Vc=8 cm. Vypočítejte délku stran b, c, jeho obsah S, obvod o, délku poloměrů kružnic trojúhelníku opsané R a vepsané r a velikost úhlů alfa a beta. V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C je dáno : a=17cm, Vc=8 cm. Vypočítejte délku stran b, c, jeho obsah S, obvod o, délku poloměrů kružnic trojúhelníku opsané R a vepsané r a velikost úhlů alfa a beta.
- Úhel mezi vektory  Najděte úhel mezi danými vektory a zaokrouhlete výsledek na desetinu stupně. u = (1, 9) a v = (-14, 14) Najděte úhel mezi danými vektory a zaokrouhlete výsledek na desetinu stupně. u = (1, 9) a v = (-14, 14)
- Pravoúhlý trojúhelník  Pro odvěsny pravoúhlého trojúhelníku platí a:b = 7:8. Přepona má délku 88 cm. Vypočítejte obvod a obsah tohoto trojúhelníku. Pro odvěsny pravoúhlého trojúhelníku platí a:b = 7:8. Přepona má délku 88 cm. Vypočítejte obvod a obsah tohoto trojúhelníku.
- Koza  Ve čtvercové zahradě o straně (a), je uprostřed jedné strany uvázaná koza. Spočítej délku provazu (r) tak, aby koza spásla přesně půlku zahrady. Platí r=c*a, urči konstantu c. Ve čtvercové zahradě o straně (a), je uprostřed jedné strany uvázaná koza. Spočítej délku provazu (r) tak, aby koza spásla přesně půlku zahrady. Platí r=c*a, urči konstantu c.
- Záhon 10  Záhon tvaru dvou rovnostranných trojúhelníků se společnou stranou, s délkou strany 2,5 m má být osázen sazenicemi okrasného keře. Zahradník doporučil mezi jednotlivými sazenicemi ponechat mezery 40 cm a na samotnou sazenici je potřeba 10 cm z obvodu. Urči Záhon tvaru dvou rovnostranných trojúhelníků se společnou stranou, s délkou strany 2,5 m má být osázen sazenicemi okrasného keře. Zahradník doporučil mezi jednotlivými sazenicemi ponechat mezery 40 cm a na samotnou sazenici je potřeba 10 cm z obvodu. Urči
- Pravoúhlý lichoběžník 6  Pravoúhlý lichoběžník ABCD se základnami AB a CD je rozdělen úhlopříčkou AC na dva rovnoramenné pravoúhlé trojúhelníky. Délka úhlopříčky AC je rovna 62 cm. Vypočítejte v cm čtverečných obsah lichoběžníku a vypočítej, o kolik cm se liší obvody trojúhelníků Pravoúhlý lichoběžník ABCD se základnami AB a CD je rozdělen úhlopříčkou AC na dva rovnoramenné pravoúhlé trojúhelníky. Délka úhlopříčky AC je rovna 62 cm. Vypočítejte v cm čtverečných obsah lichoběžníku a vypočítej, o kolik cm se liší obvody trojúhelníků
- Vzdálenosti 6653  Dvě přímé cesty se křižují a svírají úhel alfa = 53 stupňů 30'. Na jedné z nich stojí dva sloupy, jeden na křižovatce, druhý ve vzdálenosti 500m od ní. Jak daleko je třeba jít od křižovatky po druhé cestě, abychom viděli oba sloupy v zorném úhlu beta? a) Dvě přímé cesty se křižují a svírají úhel alfa = 53 stupňů 30'. Na jedné z nich stojí dva sloupy, jeden na křižovatce, druhý ve vzdálenosti 500m od ní. Jak daleko je třeba jít od křižovatky po druhé cestě, abychom viděli oba sloupy v zorném úhlu beta? a)
- Nepřístupne místa  Určete vzdálenost dvou nepřístupných míst P, Q, pokud vzdálenost dvou pozorovacích míst A, B je 2000m a znáte-li velikost úhlů QAB = 52°40'; PBA = 42°01'; PAB = 86°40' a QBA = 81°15'. Uvažovaná místa A, B, P, Q leží v jedné rovině. Určete vzdálenost dvou nepřístupných míst P, Q, pokud vzdálenost dvou pozorovacích míst A, B je 2000m a znáte-li velikost úhlů QAB = 52°40'; PBA = 42°01'; PAB = 86°40' a QBA = 81°15'. Uvažovaná místa A, B, P, Q leží v jedné rovině.
- Vypočítejte: 8173  Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t²; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t²; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Dvě silnice  Dvě silnice spolu svírají pravý úhel. Na jedné silnici je 5km od křižovatky místo P, na druhé silnici je 12km od křižovatky místo R. Místa P a R jsou spojena přímou pěšinou. Chodec jde z místa R do místa P pěšinou průměrnou rychlostí 5km/h, auto jede z mí Dvě silnice spolu svírají pravý úhel. Na jedné silnici je 5km od křižovatky místo P, na druhé silnici je 12km od křižovatky místo R. Místa P a R jsou spojena přímou pěšinou. Chodec jde z místa R do místa P pěšinou průměrnou rychlostí 5km/h, auto jede z mí
- V pravoúhlém 8  V pravoúhlém trojúhelníku ABC (AB je přepona) platí a : b = 24 : 7 a výška na stranu c = 12,6 cm. Vypočítejte délky stran trojúhelníku ABC. V pravoúhlém trojúhelníku ABC (AB je přepona) platí a : b = 24 : 7 a výška na stranu c = 12,6 cm. Vypočítejte délky stran trojúhelníku ABC.
- Vypočítejte  Vypočítejte délku tětivy v kružnici o poloměru 25 cm, které přísluší obvodový úhel 26°. Vypočítejte délku tětivy v kružnici o poloměru 25 cm, které přísluší obvodový úhel 26°.
- Čtvrtkruh  Jaký poloměr má kruh vepsaný do čtvrtkruhu o poloměru 100 cm? Jaký poloměr má kruh vepsaný do čtvrtkruhu o poloměru 100 cm?
- Sestrojený čtverce  Na dvěma stranami trojúhelníku ABC jsou sestrojeny čtverce. Obsah čtverce nad stranou BC je 25 cm². Velikost výšky vc na stranu AB je 3 cm. Pata P výšky vc dělí stranu AB v poměru 2 : 1. Strana AC je delší než strana BC. Vypočtěte v cm délku strany AB. Vy Na dvěma stranami trojúhelníku ABC jsou sestrojeny čtverce. Obsah čtverce nad stranou BC je 25 cm². Velikost výšky vc na stranu AB je 3 cm. Pata P výšky vc dělí stranu AB v poměru 2 : 1. Strana AC je delší než strana BC. Vypočtěte v cm délku strany AB. Vy
- Vypočítejte: 8174  Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Těžnice  Vypočítejte strany pravouhlého trojuholníka, pokud délky těžnic na odvesny sú ta = 30 cm a tb = 10 cm. Vypočítejte strany pravouhlého trojuholníka, pokud délky těžnic na odvesny sú ta = 30 cm a tb = 10 cm.
- Pravoúhlý 37  Pravoúhlý trojúhelník má obsah 36 cm². V něm je umístěn čtverec tak, že dvě strany čtverce jsou částmi dvou stran trojúhelníku a jeden vrchol čtverce je ve třetině nejdelší strany. Určete obsah tohoto čtverce. Pravoúhlý trojúhelník má obsah 36 cm². V něm je umístěn čtverec tak, že dvě strany čtverce jsou částmi dvou stran trojúhelníku a jeden vrchol čtverce je ve třetině nejdelší strany. Určete obsah tohoto čtverce.
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.
 