Tangens + úhel - příklady a úlohy

Tangens je goniometrická funkce. V pravoúhlém trojúhelníku je definován jako poměr protilehlé a přilehlé odvěsny k danému úhlu. Algebraicky je definován jako podíl sinu a kosinu daného úhlu. Je periodický s periodou π = 180°.

Počet nalezených příkladů: 119

  • Schodiště 4
    schody Schodiště má celkovou výšku 3,6 m a svírá s vodorovnou rovinou úhel o velikosti 26°. Vypočítej délku celého schodiště.
  • Koule ve kuželi
    sphere_in_cone Do kužele je vepsána koule (průnik jejich hranic se skládá z kružnice a jednoho bodu). Poměr povrchu koule a obsahu podstavy je 4: 3. Rovina, která prochází osou kužele, řeže kužel v rovnoramenném trojúhelníku. Určete velikost úhlu oproti základně tohoto
  • Z okna
    komin2 Z okna budovy ve výšce 7,5 m je vidět vrchol továrního komínu pod výškovým úhlem 76° 30′. Pata komínu je ze stejného místa vidět pod hloubkovým úhlem 5° 50′. Jak vysoký je komín?
  • 15-úhelník
    220px-Regular_polygon_15_annotated.svg Vypočítejte obsah pravidelného 15-úhelníka vepsaného do kružnice o poloměru r = 4. Výsledek uveďte s přesností na dvě desetinná místa.
  • TV tower
    Žižkov_tv_tower Vypočítejte výšku televizní věže, pokud pozorovatel, který stojí 430 m od paty věže vidí vrchol pod výškovým úhlem 23°?
  • Komín 5
    komin2 Jak vysoký je komín teplárny, stojí-li pozorovatel od paty komínu 26 m a vidí-li vrchol komínu pod úhlem 67°.
  • Základny
    rr_lichobeznik Základny rovnoramenného lichoběžníku ABCD mají délky 10 cm a 6 cm. Jeho ramena svírají s delší základnou úhel α = 50˚. Vypočtěte obvod a obsah lichoběžníku ABCD.
  • Pod hloubkovým úhlem
    helicopter Záchranářský vrtulník je nad místem přistání ve výšce 180m. Místo záchranné akce je odsud vidět pod hloubkovým úhlem 52°40'. Jak daleko přistane vrtulník od místa záchranářské akce?
  • Sloup elektrického vedení
    pole Z místa A je vidět sloup elektrického vedení pod úhlem 18 stupnů. Z místa B, do kterého se dostaneme, jedeme-li z Místa A 30m směrem od sloupu pod úhlem 10 stupnů. Urči výšku sloupu elektrického vedení.
  • Schody
    steps_1 Určete výšku mezi dvěma patry, pokud víte, že počet schodů mezi dvěma patry je 18, sklon stoupání je 30º a délka schodu je 28,6 cm. Výsledek uveďte v centimetrech s přesností na celé centimetry.
  • Kužel 19
    kuzel2 Kužel má průměr podstavy 1,5 m. Úhel při hlavním vrcholu osového řezu má velikost 86°. Vypočítejte objem kužele.
  • Dron
    drone Létající dron zaměřoval území pro architekta. Vzlétl kolmo z bodu C do bodu D. Byl ve výšce 300 m nad rovinou ABC. Dron z bodu D zaměřil úhel BDC 43°. Vypočítejte v metrech vzdálenost bodů C a B.
  • Kužel
    kuzel3 Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
  • Osmiboký jehlan
    octagonl_pyramid2 Urči objem pravidelného osmibokého jehlanu, jehož výška v = 100 a úhel boční hrany s rovinou podstavy je α = 60°.
  • Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
  • RR trojuhelník
    iso_23 V rovnoramenném trojúhelníku jsou stejné strany 2/3 délky základny. Určete velikost základnových úhlů.
  • Vrchol budovy
    height_building Z bodů A a B na vodorovném povrchu jsou úhly vyvýšenin horní části budovy 25° a 37°. Pokud | AB | = 57 m, vypočítejte, s přesností na metr, vzdálenosti horní části budovy od A a B, pokud jsou obě na stejné straně budovy
  • Vrchol Eiffelově věži
    Eiffel-Tower-Paris Vrchol Eiffelově věži vidíme ze vzdálenosti 600 metrů pod úhlem 30 stupňů. Určete výšku věže.
  • Na vrcholu
    hrad Na vrcholu hory stojí hrad, který má věž vysokou 30m. Křižovatku cest v údolí vidíme z vrcholu věže a od její paty v hloubkových úhlech 32° 50 'a 30° 10'. Jak vysoko je vrchol hory nad křižovatkou
  • Úhlopříčka
    hranol222_2 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60 stupňů, délka hrany postavy je 10 cm. Jaký je objem tělesa?

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.