Úhlopříčka + pravoúhlý trojúhelník - příklady a úlohy - strana 12 z 18
Počet nalezených příkladů: 345
- Kvádr
Kvádr má objem 40 cm³. Kvádr má celkovou plochu 100 cm čtverečních. Jedna hrana kostky má délku 2 cm. Najděte délku úhlopříčky kvádru. Dejte svou odpověď správně na 3 desetinná místa.
- Plášť = 2 x podstava
Pravidelný čtyřboký hranol má objem 864cm³ a obsah jeho pláště je dvojnásobkem obsahu jeho podstavy. Určete velikost jeho tělesové úhlopříčky.
- Zanedbatelným 81670
Do přepravního kontejneru o rozměrech a=10 m, b=4m, c=3m byla umístěna dřevěná bedna o rozměrech d=3m, e=4m a f=3m. Jaká je maximální délka rovné neohebné tyče se zanedbatelným průměrem, kterou lze v této situaci ještě do kontejneru umístit?
- Vzdálenost bodů
Je dán pravidelný čtyřboký jehlan ABCDV, ve kterém AB = a = 4 cm a v = 8 cm. Nechť S je střed CV. Vypočítejte vzdálenost bodů A a S.
- Borovice
Z kmene borovice dlouhé 6m a průměru 35cm se má vyřezat trám s příčným řezem ve tvaru čtverce tak, aby čtverec měl co největší obsah. Vypočítej délku strany čtverce. Vypočítej objem trámu v metrech krychlových.
- Šestihran
Pravidelný šestihran (6 úhelník) se stěnou 6 cm je otočen o 60 ° podél přímky procházející její nejdelší úhlopříčce. Jaký je objem takto vytvořeného tělesa?
- Úhlopříčka 15
Vypočítejte objem krychle, jejíž tělesová úhlopříčka má velikost 75 dm. Načrtněte si obrázek a tělesovou úhlopříčku barevně zvýrazněte.
- Překlopíme 8187
Bednu tvaru hranolu s výškou 1 m a čtvercovou podstavou o hraně 0,6 m překlopíme účinkem síly 350 N, která působí vodorovně oproti horní hraně. Jakou hmotnost má bedna?
- Špejle
Sklenice má tvar válce s vnitřním průměrem 12 cm, výška sklenice ode dna je 16 cm. Seříznutou špejli lze šikmo vložit do sklenice tak, že nepřečnívá přes okraj. Jaká je největší možná délka seříznuté špejle? (Tloušťka špejle se při výpočtu zanedbává.)
- Úhlopříčky 5551
Kostka má obsah stěny 81 cm². Vypočítej délku její hrany, stěnové a tělesové úhlopříčky.
- Podstava
Podstavou kvádru je obdélník se stranou 7,5 cm a úhlopříčkou 12,5 cm. Objem kvádru je V = 0,9 dm³. Vypočtěte povrch kvádru.
- Pravidelný 8
Pravidelný čtyřboký jehlan má podstavnou hranu a=1,56 dm a výšku v= 2,05dm. Vypočtěte : a) odchylku roviny boční stěny od roviny podstavy b) odchylku boční hrany od roviny podstavy
- Kvádr - úhlopříčka
Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6,1cm a obdélníková postava má rozměry 3,2cm a 2,4cm
- Kosoštvorec podstava
Vypočítejte objem a povrch hranola, ktorého podstava je kosoštvorec s uhlopriečkami u1 = 19 cm, u2 = 12 cm. Výška hranola sa rovná dvojnásobku podstavovej hrany.
- Vypočtěte 10
Vypočtěte velikost odchylky tělesové úhlopřičky a boční hrany c kvádru o rozměrech: a=28cm, b=45cm a c=73cm. Dále vypočtěte velikost odchylky tělesové úhlopřičky od roviny podstavy.
- Stěnové úhlopříčky
Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1,3, y = 1, z = 1,2
- Hranol 23
Hranol ABCDA'B'C'D' má čtvercovou podstavu. Stěnová úhlopříčka AC podstavy má délku 9,9cm, tělesová úhlopříčka AC' má délku 11,4cm. Vypočítejte povrch a objem hranolu.
- Kolmý jehlan
Vypočtěte objem kolmého jehlanu, jehož boční strana délky 5cm svíra se čtvercovou podstavou úhel s velikostí 60 stupňů.
- Roviny bočních stěn
Vypočítej objem a povrch kvádru jehož strana c má délku 30 cm a tělesová úhlopříčka svírá s rovinami bočních stěn úhly o velikostech 24 st. 20’, 45 st. 30’
- Sloup
Vypočítejte objem a povrch podpůrného sloupu tvaru kolmého čtyřbokého hranolu, jehož podstavou je kosočtverec s úhlopříčku u1=102cm, u2=64cm. Výška sloupu je 1,5m.
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka. Úhlopříčka - slovní úlohy a příklady. Příklady na pravoúhlý trojúhelník.