Vláček

Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vagonu a pokaždé mu vyšel stejný součet. Určete jak mohla být čísla do vagonu rozdělena. Kolik má úloha řešení?

Výsledek

n =  1

Řešení:

[168]:[249]:[357]



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 1 komentář:
#
Karel
Nápověda. Zjistěte, jaký byl součet čísel v každém vagónu.

Součet všech čísel ve všech vagónech je
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45.
Součet čísel v každém vagónu tedy byl 45 : 3 = 15.
Ve třetím vagónu se vezla tři lichá čísla jiná než 1, z nich lze získat součet 15 pouze
jako 3 + 5 + 7. V prvním vagóně se vedle 1 vezla ještě některá dvě čísla z 2, 4, 6, 8, 9.
Z těchto čísel lze získat součet 15 pouze jako 1 + 6 + 8. Do druhého vagónu tak zbývají
čísla 2, 4, 9 (pro kontrolu 2 + 4 + 9 = 15).
Úloha má jediné řešení: v prvním vagónu se vezla čísla 1, 6, 8, ve druhém vagónu 2,
4, 9, ve třetím vagónu 3, 5, 7.
Jiné řešení. I bez určení součtu čísel v každém vagónu lze na uvedené řešení přijít zkou-
šením. Nejméně možností je v posledním vagónu, kde se vezla některá tři čísla z 3, 5, 7, 9:
• Trojice 5, 7, 9 má součet 21 a stejný součet by musel být i v prvním vagónu. Ze dvou
zbylých čísel a 1 však lze získat nejvýše 1 + 6 + 8 = 15, což nevyhovuje.
• Trojice 3, 7, 9 má součet 19; v prvním vagónu by pak mohl být součet nejvýše 1 + 6 +
+ 8 = 15, což také nevyhovuje.
• Trojice 3, 5, 9 má součet 17; v prvním vagónu by pak mohl být součet nejvýše 1 + 7 +
+ 8 = 16, což také nevyhovuje.
• Trojice 3, 5, 7 má součet 15; v prvním vagónu by pak mohla být trojice 1, 6, 8 se
součtem 15, což je vyhovující možnost.
Do druhého vagónu tak zbývají čísla 2, 4, 9, která mají taktéž součet 15.

avatar









Další podobné příklady a úkoly:

  1. Pohyb
    cyclist_1 Pokud půjdeš rychlostí 6.2 km/h, přijdeš na nádraží 44 minut po odjezdu vlaku. Pokud pojedeš na kole na stanici rychlostí 52 km/h, přijedeš na nádraží 52 minut před odjezdem vlaku. Jak daleko je vlakové nádraží?
  2. Opice
    monkey Do studny hluboké 29 metrů spadla opice. Každý den se jí daří vyškrábat se 3 metry, v noci však spadne zpět o 2 metry. Na který den se opice dostane ze studny?
  3. Záhrada
    garden_1 Rozloha čtvercové zahrady tvoří 6/8 rozlohy zahrady tvaru trojúhelníku se stranami 136 m 85 m a 85 m. Kolik metrů pletiva potřebuji na oplocení čtvercové zahrady?
  4. Dělníci
    forestry_workers V lese je zaměstnáno 45 dělníků sázením stromků. Při 7 hodinové práci denně by skončili práci za 43 dní. Po 18 dnech odejde 22 dělníků; za jaký čas dokončí sázení stromků ostatní, když od toho dne budou pracovat 11 hodin denně?
  5. Prémie
    moeny Hrubá mzda zaměstnance byla 14712 Kč včetně 22% prémie. Kolik Kč byly prémie?
  6. Pohybovka3
    dragway Z Bratislavy do Levíc jede auto rychlostí 78 km/h. Z Levíc do Bratislavy vystartovalo auto rychlostí 71 km/h současně. Kolik minut před utkáním budou auta od sebe vzdáleny 19 km?
  7. Vojíni
    regiment Je dána vzdálenost trasy 249 km, první den jede jeden oddíl cestu tam průměrnou rychlostí 20 km/h a cestu zpátky 19 km/h, druhý den jede druhý oddíl tu samou trasu průměrnou rychlostí 25 km/h tam i zpátky. Kterému oddílu bude cesta trvat déle?
  8. Výkop
    vykop_ryha Pán Milan si vypočítal, že výkop pro vodovodní přípojku, vykope za 7 dní. Jeho kamarádovi by to trvalo 8 dní. 4 dny pracoval Milan sám. Potom mu přijel kámoš pomoci a kopal z druhého konce. Kolikátý den od začátku výkopových prací se setkali?
  9. Diofantos
    diofantos_1 O tomto řeckom matematikovi z Alexandrie kromě toho, že žil kolem roku 250 před Kristem, mnoho nevíme. Díky jednomu z jeho obdivovatelů, který popsal jeho život pomocí algebraických hádanek, víme, jakého se dožil věku. Diofantova mládí trvala 1/6 jeho živ
  10. Káva
    coffe Na skladě jsou tři druhy značkové kávy v cenách: I. Druh. .. .. .304 Kc/kg II. Druh. .. .. .202 Kc/kg III. Druh. .. .. 188 Kc/kg Smícháním těchto tří druhů v poměru 2:2:7 vytvoříme směs. Jaká bude cena 1450 gramů této směsi?
  11. Obchod
    pave Metr látky byl zlevněn o 2 USD. Nyní stojí 9 m látky stejně jako dřívě 8 m. Urči starou a novou cenu 1 m látky.
  12. Ručičky
    soviet_watch Hodiny ukazují 12 hodin. Po kolika minutách se bude svíraný úhel mezi hodinovou a minutovou ručičkou 60°? Uvažujte kontinuální pohyb obou ručiček hodin.
  13. Obdélník
    rectangle_inscribed_circle Obdélník je 29 cm dlouhý a 47 cm široký. Urči poloměr kružnice opsané obdélníku.
  14. Kvádr
    cuboid_1 Kvádr má povrch 1577 cm2, délky jeho hran jsou v poměru 4:1:2. Vypočítej objem kvádru.
  15. Lék
    tablets Jistý druh léku vyrábí několik výrobců v různých baleních s různým obsahem účinné látky. Balení č.1: obsahuje 50 tabletek po 800 mg účinné látky, balení za 35 Eur. Balení č.2: obsahuje 30 tabletek po 1000 mg účinné látky, balení za 30 Eur. Které balení
  16. Bazén
    swimming-pool Bazén má rozměry dna 9 m a 16 m a výšku 152 cm. Kolik hektolitrů vody je v něm, pokud voda sahá 19 cm pod horní okraj bazénu?
  17. Kořen
    root_quadrat Kořen rovnice ? je: ?