Města
Města A, B, C leží v jedné výškové rovině. C je 50 km na východ od B, B je severně od A. C je odchýlené o 50° od A. Letadlo letí kolem míst A, B, C ve stejné výšce. Když letadlo letí kolem B, jeho výškový úhel k A je 12°. Určete výškový úhel k A, když letadlo letí kolem města C.
Správná odpověď:

Tipy na související online kalkulačky
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
planimetriegoniometrie a trigonometrieJednotky fyzikálních veličinÚroveň náročnosti úkolu
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Letadlo
Letadlo míří na dráhu pod úhlem deprese 23°. Letí ve výšce 3 km nad zemí. Jaká je horizontální vzdálenost letadla od letiště?
- Pozorovatelny 17433
Letadlo letící právě nad místem A je vidět z pozorovatelny B, vzdálené od místa A 2 400 metrů, ve výškovém úhlu 52°30´. Jak vysoko letí letadlo?
- Dopravní 2
Dopravní letadlo, které právě prolétá nad místem 2 400 m vzdáleném od místa pozorovatele, je vidět pod výškovým úhlem o velikosti 26° 20´. V jaké výšce letadlo letí?
- Triangulace - výškové úhly
Vrchol věže stojící na rovině vidíme z určitého místa A ve výškovém úhlu 39° 25´. Přijdeme-li směrem k jeho patě o 50m blíže na místo B, vidíme z něho vrchol věže ve výškovém úhlu 56° 42´. Jak vysoká je věž?
- Mechanická energie
Letadlo o hmotnosti 100 tun letí ve výšce 11 km rychlostí 850 km/h. Jaká je jeho kinetická, potencionální a celková mechanická energie?
- Pozorovatel 11
Pozorovatel vidí letadlo pod výškovým úhlem 35° (úhel od vodorovné roviny). V tu chvíli letadlo hlásí výšku 4 km. Jak daleko od pozorovatele je místo, nad kterým letadlo letí. Zaokrouhli na stovky metrů.
- Z letadla
Z letadla které letí ve výšce 500m, pozorovali ve směru letu místa A a B (nacházející se ve stejné nadmořské výšce) pod hloubkovými úhly alfa = 48° a beta = 35°. Jak daleko jsou od sebe místa A a B?