Komolý kužel
Výška kužele je 7 cm a délka boční strany je 10 cm a spodní poloměr je 3 cm. Jaká by mohla být odpověď na horní poloměr komolého kužele?
Správná odpověď:

Tipy na související online kalkulačky
Chcete proměnit jednotku délky?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
stereometrieplanimetrieJednotky fyzikálních veličinÚroveň náročnosti úkolu
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Kruhový kužel
Poloměr základny pravoúhlého kruhového kužele je 14 palců a jeho výška je 18 palců. Jaká je velikost boční strany?
- Michaela
Michaela má ve své sbírce dvě vázy. První váza má tvar kužele s průměrem podstavy d = 20 cm; druhá váza má tvar komolého kužele s průměrem spodní podstavy d1 = 25 cm a s průměrem horní podstavy d2 = 15 cm. Do které vázy se vejde více vody, pokud výška obo
- Seříznutý kužel
Horní a dolní poloměr seříznutého pravého kruhového kužele je 8 cm a 32 cm. Je-li výška seříznutého okraje 10 cm, jak daleko od spodní základny musí být vytvořena rovina řezu, aby se vytvořily dva podobné seříznuté kužele?
- Průměr 44
Průměr kužele je 24 cm, poloměr je 12 cm. Kolik cm měří výška, jestliže je o jednu třetinu větší než poloměr kužele?
- Komolý kužel
Pokud je nádrž zcela plná, nádrž obsahuje 28,54 m³ vody. Průměr horní základny je 3,5 m, zatímco na spodní základně je 2,5 m. Stanovte výšku, pokud je nádrž ve tvaru komolého kužele pravoúhlého kruhového kužele.
- Seříznutý kužel
Objem seříznutého kužele je V=38000π cm³. Poloměr dolní podstavy je o 10 cm větší, než poloměr horní podstavy. Určete poloměr podstav, pokud výška v=60 cm.
- Pětiúhelník 3
Pruh papíru ve tvaru obdélníka o rozměrech 16 x 4 cm je přeložen po délce tak, že pravý spodní roh je přiložen na levý horní roh. Jakou plochu má vzniklý pětiúhelník?