Kruh v rovině

Najděte parametry kruhu v rovině - souřadnice středu a poloměr:

x2+(y3)2=14


Správná odpověď:

x0 =  0
y0 =  3
r =  3,7417

Postup správného řešení:

(xx0)2+(yy0)2=r2 (x0)2+(y3)2=14  x0=0=0
y0=3=3
r=14=3.7417



Našel si chybu či nepřesnost? Klidně nám ji napiš.



avatar







Tipy na související online kalkulačky
Základem výpočtů v analytické geometrii je dobrá kalkulačka rovnice přímky, která ze souřadnic dvou bodů v rovině vypočítá smernicový, normálový i parametrický tvar přímky, směrnici, směrový úhel, směrový vektor, délku úsečky, průsečíky se souřadnicovým osami atd.
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Související a podobné příklady:

  • Kružnice
    circles Z rovnice kružnice: 3x2 +3y2 +54x +168 = 0 Vypočítejte souřadnice středu kružnice S [x0, y0] a poloměr kružnice r.
  • Do kosočtverce
    circle_inside_rhombus Najděte rovnici kružnice vepsané do kosočtverce ABCD, jestliže souřadnice vrcholů jsou A [1, -2], B [8, -3] a C [9, 4].
  • Rovnice kružnice
    circle_axes Najděte rovnici kružnice, která se dotýká osy y ve vzdálenosti 4 od počátku a vysekne tětivu délky 6 na ose x.
  • Střed
    circle Vypočítejte súradnice středu kružnice: x2 +14x + y2 -4y +52 = 0
  • Elipsa
    elipsa Elipsa je vyjádřena rovnicí 9x2 + 25y2 - 54x - 100y - 44 = 0. Určete hlavní a vedlejší osu, excentricitu a souřadnice středu elipsy
  • Kružnice
    two_circles Dokažte, že rovnice k1 a k2 představují kružnice. Napište rovnici přímky, která prochází středy těchto kružnic. k1: x2+y2+2x+4y+1=0 k2: x2+y2-8x+6y+9=0
  • Kružnice
    touch_circle Najděte rovnice kružnic, které procházejí body A (-2; 4) a B (0, 2) a dotýkají se osy x.
  • Vzdálenost bodů 2
    stredna_priecka Vypočítej vzdálenost bodů X[1,3] od středu úsečky x=2-6t, y=1-4t; t je z intervalu <0,1>.
  • Výška lichoběžníku
    trapezium3 Vypočítejte výšku lichoběžníku ABCD, kde jsou souřadnice vrcholů: A [2, 1], B [8, 5], C [5, 5] a D [2, 3]
  • Na přímce
    primka Na přímce p: x=4+t, y=3+2t, t jsou R, určete bod C, který má stejnou vzdálenost od bodů A[1,2] a B[-1,0].
  • Najděte
    intersect_circles Najděte průsečíky kružnic: x2 + y2 + 6 x - 10 y + 9 = 0 a x2 + y2 + 18 x + 4 y + 21 = 0
  • Kružnice a tečna
    distance-between-point-line Najděte rovnici kružnice se středem v (1,20), která se dotýká přímky 8x + 5y-19 = 0
  • Délka úseku úsečky
    linear_eq Předpokládejme, že víte, že délka úseku úsečky je 15, x2 = 6, y2 = 14 a x1 = -3. Najděte možnou hodnotu y1. Existuje více než jedna možná odpověď? Proč ano nebo proč ne?
  • Těžnice
    taznice3 Trojúhelník ABC v rovině Oxy; jsou dány souřadnice bodů: A = 2,7 B = -4,3 C = 6, -1 Zkuste vypočítet všechny těžnice a všechny délky stran.
  • Na přímce
    linearna Na přímce p: 3 x - 4 y - 3 = 0, určte souradnice bodu C, který je ve stejné vzdálenosti od bodů A [4, 4] a B [7, 1].
  • Souměrnost
    symmetry Najděte obraz A´ bodu A[1,2] v osové souměrnosti s osou p: x=-1+3t, y=-2+t (t = jsou realná čísla)
  • Poloměr
    numbers Najděte poloměr kruhu pomocí Pythagorovy věty jestliže a = 9, b = r, c = 6 + r