Trojúhelník + válec - příklady a úlohy
Počet nalezených příkladů: 20
- Válec a krychle
Určete obsah pláště a objem rotačního válce, který je opsán krychli s hranou délky 5 cm.
- Rotační telesa
Rotační kužel a rotační válec mají stejný objem 180 cm3 a stejnou výšku v=15cm. Které z těchto dvou těles má větší povrch?
- Válec 17
V rotačním válci je dáno: V= 120 cm3, v=4 cm. Vypočtětě r, S plášte.
- Valec naležato
Válec o průměru 3m a výšce/délce 15 m je položen naležato. Je do něj napuštěna voda, která sahá do výšky 60 cm pod osu válce. Kolik hektolitrů vody je ve válci?
- Válec
Válec je třikrát vyšší než je jeho šířka. Délka úhlopříčky válce je 20 cm. Najděte plochu horní části válce.
- Válec horizontálně
Kolik nafty je ve vodorovné nádrži ve tvaru válce o délce 10m, když šířka hladiny je 1m a hladina je 0,2m pod horní stranou válce?
- Kužel s průměrem
Nádoba tvaru kužele s průměrem dna 60cm a boční stranou délky 0,5m je zcela naplněna vodou. Vodu přelijeme do nádoby, která má tvář válce o poloměru 3dm a výšce 20cm. Bude válec přetékat, nebo naopak nebude plný? Vypočítejte kolik vody přeteče, nebo naopa
- Ve válci
Ve válci je 62,8 litru vody. Výška hladiny je 0,5 metru. Urči průměr dna.
- Vypočítejte 9
Vypočítejte objem a povrch válce, jehož osový řez je obdélník široký 15 cm s úhlopříčkou dlouhou 25 cm.
- Pravítko
Na pravítko, které má tvar hranolu s podstavou tvaru rovnostranného trojúhelníku o straně délky 3 cm, se má vyrobit pouzdro tvaru válce. Jaký musí být nejmenší vnitřní průměr pouzdra? Rozměr určete s přesností na desetiny centimetru
- Plášť 8
Plášť kužele je vytvořen svinutím kruhové úseče o poloměru 1. Pro jaký středový úhel dané kruhové výseče bude objem vzniklého kužele maximální?
- Šestihran
Pravidelný šestihran (6 úhelník) se stěnou 6 cm je otočen o 60 ° podél přímky procházející její nejdelší úhlopříčce. Jaký je objem takto vytvořeného tělesa?
- Borovice
Z kmene borovice dlouhé 6m a průměru 35cm se má vyřezat trám s příčným řezem ve tvaru čtverce tak, aby čtverec měl co největší obsah. Vypočítej délku strany čtverce. Vypočítej objem trámu v metrech krychlových.
- Kruhový bazén
Podstava bazénu má tvar kruhu o poloměru r = 10m kromě kruhového odstavce, který určuje tětiva délky 10m. Jeho hloubka je h = 2m. Kolik hektolitrů vody se vejde do bazénu?
- Špejle
Sklenice má tvar válce s vnitřním průměrem 12 cm, výška sklenice ode dna je 16 cm. Seříznutou špejli lze šikmo vložit do sklenice tak, že nepřečnívá přes okraj. Jaká je největší možná délka seříznuté špejle? (Tloušťka špejle se při výpočtu zanedbává.)
- Tajný poklad
Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
- Věz vysílače
Věz vysílače je v 80 metrech výšky stabilizována k zemi 4 ocelovými lany ukotvenými v zemi 60 metrů od paty věže. Vypočítejte, kolik metrů ocelového lana bylo potřeba ke stabilizaci vysílací věže. Použité ocelové lano má kruhový průřez o poloměru 2 cm. Vy
- Plovoucí sud
Na vodě plave sud tvaru válce, a to tak že z vody vyčnívá 8 dm do výšky a na hladině má šířku 23 dm. Délka sudu je 24 dm. Vypočítejte objem sudu.
- Na válec
Na válec o průměru 4,6 cm nasaďte část koule tak, aby povrch této části byl 20 cm2. Určete r koule ze které byl vrchlík seříznut.
- Dvě koule
Dvě koule, jedna s poloměrem 8 cm a další s poloměrem 6 cm, se vloži do válcové plastové nádoby s poloměrem 10 cm. Najděte množství vody potřebné k jejich potopení.
Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku. Příklady na trojúhelník. Příklady na válec.