Pastevci

Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?

Správna odpoveď:

x1 =  85
x2 =  170

Postup správneho riešenia:

x = a+b+c < 200
b = 45/60 a
c = 45/35 a
a + 45/60 a + 45/35 a < 200
LCD(11, 4560, 4535) = LCM(1, 60, 35) = 22×3×5×7 = 420
11 = 420420
4560 = 315420
4535 = 540420


420 k + 315 k + 540 k < 84000
1275 k < 84000
17 k < 1120

x = 56+42+72 = 170
x = 28+21+36 = 85




Našiel si chybu či nepresnosť? Kľudne nám ju napíš.



Zobrazujem 2 komentáre:
#
Mo-radce
Nápoveda. Aké sú pomery existujúcich účtov jednotlivých druhov zvierat?

Možné riešenie.

Pomer medzi súčasným počtom kráv a koní je 60:45 = 4:3 a pomer medzi súčasným počtom oviec a koní je 60:35 = 12:7.
Počet koní teda musí byť nejakým násobkom čísla 3 a súčasne čísla 7, teda násobkom čísla 21.
Keby na lúke bolo 21 koní, potom by tam bolo 21 · 4: 3 = 28 kráv a 21 · 12: 7 = 36 oviec, celkom teda 21 + 28 + 36 = 85 zvierat. Keby na lúke bolo 42 koní, potom by všetky počty boli dvojnásobné, celkom teda 2 · 85 = 170 zvierat. Keby na lúke bolo 63 koní, potom by všetky počty boli trojnásobné, celkom teda 3 · 85 = 255 zvierat, čo je však viac ako 200.

Na lúke sa teda páslo buď 85, alebo 170 zvierat.

#
Mo-radce
K rovnakému výsledku možno dôjsť aj rozkladom daných násobkov na súčiny prvočísel:
45 = 3 · 3 · 5, 60 = 2 · 2 · 3 · 5, 35 = 5 · 7.

Aby sa zodpovedajúce násobky počtov jednotlivých zvierat rovnali, musia byť v ich prvočíselných rozkladoch zastúpené všetky predchádzajúce prvočísla (vrátane ich násobnosť). Najmenší možný počet kráv teda je 2 · 2 · 7 = 28, koní 3 · 7 = 21 a oviec 2 · 2 · 3 · 3 = 36, celkom 28 + 21 + 36 = 85 zvierat.

avatar









Tipy na súvisiace online kalkulačky
Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel?
Potrebujete pomôcť spočítať, vykrátiť či vynásobiť zlomky? Skúste našu zlomkovú kalkulačku.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3   video4

Súvisiace a podobné príklady:

  • Pán Baran
    sheep Keď pán Baran zakladal chov, mal bielych ovcí o 8 viac nez čiernych. V súčasnosti má bielych ovcí štyrikrát viac ako na začiatku a čiernych trikrát viac ako na začiatku. Bielych oviec je teraz o 42 viac než čiernych. Koľko teraz pán Baran chová bielych a
  • Na farne
    kone_dzokej Na farme chovaju kravy kone a ovce. Kráv je 37, čo je o 25 viac ako oviec. Koní je 7×menej ako kráv a oviec dohromady. Koľko zvierat chovaju na farme spolu?
  • Pasenie
    luka Na lúke sa pasú kone, ovce a kačice. Oviec je viac ako kačíc. Ovce a kačice majú spolu 100 hláv a nôh. Kačíc a oviec je trikrát viac ako koní. Koľko je koní?
  • Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  • MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozobera
  • Na farme 7
    kone_dzokej Na farme chovajú kravy, kone a ovce. Kráv je 37 čo je o 25 viac ako oviec. Koní je sedemkrát menej ako kráv a oviec dokopy. Koľko zvierat chovajú na farme spolu?
  • Kytice 2
    tulipany Simona natrhala v záhrade 63 tulipánov a uviazala z nich dvojfarebné kytice pre svoje priateľky. Tulipány boli iba červené a biele. Do každej kytice dala rovnako veľa tulipánov, pričom tri z nich boli vždy červené. Koľko mohla Simona odtrhnúť' bielych tul
  • MO Z8–I–3 - 2017 - Adelka
    numbers2 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
  • MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  • MO Z8-I-1 2018
    age Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  • Komora
    socks V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich p
  • Športovci 3
    olympics Športovci na štadione mohli nastúpiť do dvojstupov, trojstupov, štvorstupov, paťstupov, šesťstupov. Bolo ich viac ako 100 ale menej ako 200. Koľko ich bolo?
  • Na farme
    sheep Na farme sú iba ovce a kravy. Oviec je o 8 viac ako kráv. Počet kráv je polovica počtu oviec. Koľko zvierat žije na farme?
  • Vreckovky
    harmasan Do obchodu dostali tri druhy vreckoviek - 132 detských, 156 dámskych a 204 pánskych. Vreckovky jednotlivých druhov boli balené do škatuliek po počte kusov rovnakom pre všetky tri druhy (a čo najväčším). Určite tento počet, ak viete, že v každej krabičke b
  • Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
  • Cukríky MO Z6-I-5 2017
    cukriky V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  • Z9 – I – 6 2018 MO
    numbers2 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dv