Venček

Na venček prišlo 12 chlapcov a 15 dievčat. Koľkými spôsobmi môžeme vybrať 4 tanečné páry?

Výsledok

n =  16216200

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#
Peter
Pouzi kombinatoricke pravidlo sucinu.

Prveho chlapca vyberas z 12 chlapcov, druheho z 11, tretieho z 10, stvrteho z 9.
Prve dievca z 15, druhe zo 14, tretie z 13, stvrte z 12.

Keby tieto cisla len tak vynasobis, dostanes pocet moznosti, keby zalezi na poradi. Kedze  nezalezi, vydelis 4! = 4x3x2x1 a dostanes pocet moznosti, ked nezalezi na poradi

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Chceš si dať zrátať kombinačné číslo? Pozrite aj našu kalkulačku variácií.

Ďaľšie podobné príklady:

  1. Oddiel
    skauti_3 Oddiel má 18 členov: 10 dievčat 6 chlapcov a 2 vedúci. Koľko rôznych hliadok je možné vytvoriť, aby v hliadke boli 2 chlapci, 3 dievčatá a 1 vedúci?
  2. Kostýmy
    kostym V zostave ma 12 dievčat červené a 25 dievčat modré kostýmy. Koľkými spôsobmi z nich môžme zostaviť skupinu 6 dievčat tak, aby 4 dievčatá mali červené kostýmy?
  3. Jedálniček
    jedalnicek Na jedálnom lístku je 12 druhov jedál. Koľkými spôsobmi môžeme vybrať 4 rôzne jedlá do denného menu?
  4. 16 študentov
    postielka_1 16 študentov na brigáde sa má ubytovať v jednej 8 posteľovej a dvoch 4 postelových izbách. Koľkými spôsobmi môžu to môžu spraviť?
  5. Prvá akosť
    prvni_jakost V zásielke je 40 výrobkov. 36 prvá akosť, 4 sú chybné. Koľkými spôsobmi možno vybrať 5 výrobkov, tak aby bol maximálne jeden chybný?
  6. Olympiáda
    olympics Koľkými spôsobmi sa môžu umiestniť šiesti pretekári na medailových pozíciách na olympiáde? Na farbe kovu záleží.
  7. Alica
    zmrzlina_5 Alica sa zastavila pri stánku so zmrzlinou. Dnes mali v ponuke ananásovú, čokoladovu, jogurtovu, punčovu, vanilkouvu a jablkovu zmrzlinu. Alica si chce kúpiť dva kopčeky rôznej zmrzliny. O koľko menej možností má Alica pri výbere zmrzliny, ak vie, že punčo
  8. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  9. Akvárium
    zebra_fish Akvárium v obchode so zvieratkami má 32 zebra rybičiek. Koľkých rôznymi spôsobmi môže Peter vybrať 5 zebra rybičiek?
  10. Trojice
    trojka Koľko rôznych trojíc možno vybrať zo skupiny 38 študentov?
  11. Kombinatorika
    fontains V meste je 7 fontán. Vždy fungujú iba 6. Koľko je možností, ktoré môžu striekať...
  12. Kombinácie 2. triedy
    color_circle Z koľko prvkov je možné vytvoriť 4560 kombinácií druhej triedy?
  13. Slovo KLADIVO
    water3_11 Koľko slov sa dá vytvoriť zo slova KLADIVO, ak chceme, aby niekde bolo vedľa seba napísané slovo VODA
  14. Výpočet KČ
    color_combinations Vypočítajte: ?
  15. Kniha
    books_32 Kniha obsahuje 524 strán. Ak je známe, že osoba vyberie ľubovoľnú stranu medzi strana s číslom 125 a 384, nájdite pravdepodobnosť výberu strany s číslom 252 alebo 253.
  16. Variácie
    pantagram Určte počet prvkov ak je počet variacií štvrtej triedy bez opakovania 38-krát väčší ako počet variacií tretej triedy bez opakovania.
  17. Počet trojuholníkov
    SquareTriangle Je daný štvorec ABCD a na každej jeho strane 8 vnútorných bodov. Určte počet všetkých trojuholníkov s vrcholmi v týchto bodoch.