SUS a zorný úhel

Rybník vidíme pod zorným úhlem 65° 37'. Jeho kraje jsou vzdáleny 155 m a 177 m od pozorovatele. Jaká je šířka rybníka?

Správný výsledek:

c =  180,8356 m

Řešení:

a=155 m b=177 m  A=65+3760=39376065.6167  c=a2+b22 a b cosA=a2+b22 a b cos65.616666666667 =1552+17722 155 177 cos65.616666666667 =1552+17722 155 177 0.41284=180.836=180.8356 m

Vyzkoušejte výpočet přes naší kalkulačku trojúhelníků.




Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Kosinovú větu přímo používá kalkulačka SUS trojúhelníku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • V terénu - věta SSU
    ssu_veta V terénu byla měřena vzdálenost bodů P a Q rovná 356 m. Úsečka PQ je vidět od pozorovatele pod zorným úhlem 107°22'. Vzdálenost pozorovatele od místa P je 271 m. Urči zorný úhel, pod kterým je vidět místo P a pozorovatele.
  • Z okna
    komin2 Z okna budovy ve výšce 7,5 m je vidět vrchol továrního komínu pod výškovým úhlem 76° 30′. Pata komínu je ze stejného místa vidět pod hloubkovým úhlem 5° 50′. Jak vysoký je komín?
  • Zorný úhel
    zorny Pozorovatel vidí přímou ohradu dlouhou 60 m v zorném úhlu 30°. Od jednoho konce ohrady je vzdálen 102 m. Jak daleko je pozorovatel od druhého konce ohrady?
  • Lodky
    ship_1 Dvě loďky jsou zaměřeny z výšky 150m nad hladinou jezera pod hloubkovými úhly 57° a 39°. Vypočítejte vzdálenost obou loděk, pokud zaměřovací přístroj a obě loďku jsou v rovině kolmé k hladině jezera.
  • Kostelní věž
    church_tower Kostelní věž vidíme z cesty pod úhlem 75°. Když se vzdálíme o 21 metrů, je ji vidět pod úhlem 20°. Jaká je vysoká?
  • Stožár
    geodet_1 Vrchol stožáru vidíme ve výškovém úhlu 45°. Pokud se přiblížíme k stožáru o 10 m, vidíme vrchol pod výškovým úhlem 60°. Jaká je výška stožáru?
  • Strom 14
    stromcek_1 Mezi body A, B je 50m. Z místa A, vidíme strom pod ůhlem 18°. Z místa B, vidíme strom 3x velkým ůhlem. Jak vysoký je strom?
  • Trojúhelník SUS
    triangle_iron Vypočítejte plochu a obvod trojúhelníku, pokud jeho dvě strany jsou dlouhé 88 dm a 88 dm a úhel nimi sevřený je 170°.
  • Budova
    building Budovu jsem zaměřil pod úhlem 30°. Když jsem se pohnul o 5 m budovu jsem zaměřil pod úhlem 45°. Jaká je výška budovy?
  • Úhly
    triangles_6 Zjisti zda mohou být uvedené hodnoty velikostmi vnitřních úhlů nějakého trojuhelníku: a) 23°10',84°30',72°20' b) 90°,41°33',48°37' c) 14°51',90°,75°49' d) 58°58',59°59',60°3'
  • Navigace lodě
    navigation Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr.
  • Vypočítej z ťežnice
    triangles_1 Vypočítej obvod, obsah a velikosti zbývajících úhlů trojúhelníku ABC, jestliže je dáno: a = 8,4; β = 105°35'; ťežnice ta = 12,5.
  • Vodní kanál
    trapezium_prism_2 Průřez vodního kanálu je lichoběžník. Šířka snu je 19,7 m, šířka vodní hladiny je 28,5 m, boční stěny mají sklon 67°30' a 61°15'. Vypočtěte, jaké množství vody proteče kanálem za 5 minut, pokud rychlost vodního proudu je 0,3 m/s.
  • Vnitřní úhly
    triangle_1111 Vnitřní úhly trojúhelníku mají velikosti 30°, 45°, 105°, jeho nejdelší strana měří 10cm. Vypočítejte délku nejkratší strany, výsledek uveďte v cm s přesností na dvě desetinná čísla.
  • Letadlo
    compass Letadlo letělo 50 km kurzem 63 ° 20 'a pak 153 ° 20' 140 km. Najděte vzdálenost mezi výchozím a koncovým bodem.
  • Dvě hajovky
    hajovna Dvě hajovky A, B jsou odděleny lesem, obě jsou viditelné z myslivny C, která je s oběma spojena přímými cestami. Jakou bude mít délku projektovaná cesta z A do B, je-li AC= 5004 m, BC= 2600 m a úhel ABC= 53°45’?
  • Mrak
    uhly Přibližně v jaké výši je mrak který vidíme pod výškovým úhlem 26°10' pokud vidíme slunce pod výškovým úhlem 29°15' a stín mraku je od nás vzdálen 92 metrov?