Tetivy pod uhlom

Z bodu na kružnici s priemerom 8 cm sú vedené dve zhodné tetivy, ktoré zvierajú uhol 60°. Vypočítaj dĺžku týchto tetív.

Správny výsledok:

t =  6,9282 cm

Riešenie:

D=8 cm A=60 B=A/2=60/2=30 r=D/2=8/2=4 cm  r2=r2+t22 r t cosB t2=2 r t cosB t=2 r cosB=2 r cos30 =2 4 cos30 =2 4 0.866025=6.928=6.9282 cm



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 0 komentárov:
avatar




Tipy na súvisiace online kalkulačky
Hľadáte pomoc s výpočtom koreňov kvadratickej rovnice?
Pozrite aj našu kalkulačku pravouhlého trojuholníka.
Kosínusovú vetu priamo používa kalkulačka SUS trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2

Ďaľšie podobné príklady a úlohy:

  • Rovnobežník - uhlopriečky
    Parallelogram_1 Vypočítajte obsah rovnobežníka, ak sú veľkosti strán a=80, b=60 a veľkosť uhla zovretého uhlopriečkami je 60°.
  • Tetivy
    chords_1 V kružnici s polomerom 8,5 cm sú zostrojené dve rovnobežné tetivy, ktorých dĺžky sú 9 cm a 12 cm. Vypočítajte vzdialenosť tetív v kružnici.
  • V kružnici 2
    chords V kružnici s priemerom 70 cm sú narysované dve rovnobežné tetivy tak, že stred kružnice leží medzi tetivami. Vypočítaj vzdialenosť týchto tetív, ak jedna z nich má dĺžku 42 cm a druhá 56 cm.
  • Funkcie sinus, kosinus
    triangle2 Vypočítaj veľkosti zostávajúcich strán a uhlov pravouhlého trojuholníka ABC, ak je dané: b = 10 cm; c = 20 cm; uhol alfa = 60° a uhol beta = 30° (použi Pytagorova vetu a funkcie sínus, kosínus, tangens, kotangens)
  • Dve tetivy
    twochords V kružnici sú vedené dve tetivy dlhé 30 a 34 cm. Kratšia z nich je od stredu dvakrát ďalej než dlhšia. Urči polomer kružnice.
  • Tetiva 17
    tetiva33 Akú vzdialenosť majú dotyčnica t kružnice (S, 4 cm) a tetiva tejto kružnice, ktorá má dlžku 6 cm a je rovnobežná s dotyčnicou?
  • Dve tetivy 4
    twochords V kružnici s r=26 cm sú narysované 2 rovnobežné tetivy . Jedna tetiva má dĺžku t1=48 cm a druhá má dĺžku t2=20cm, pričom stred leží medzi nimi. Vypočítaj vzdialenosť dvoch tetív.
  • Dve horárne
    hajovna Dve horárne A, B sú oddelené lesom, obe sú viditeľné z horárne C, ktorá je s oboma spojená priamymi cestami. Akú bude mať dĺžku projektovaná cesta z A do B, ak je AC = 5004 m, BC = 2600 m a uhol ABC = 53° 45 '?
  • Kosodĺžnik
    kosodlznik Vypočítajte obsah a výšku krycej dosky tvaru kosodĺžnika, pre ktorý platí: d(BC)= 60 cm, uhol BAD = 45°, uhol ADB = 90°.
  • Zorný uhol 2
    zorny Pozorovateľ vidí priamu ohradu dlhú 60 m v zornom uhle 30°. Od jedného konca ohrady je vzdialený 102 m. Ako ďaleko je pozorovateľ od druhého konca ohrady?
  • V kružnici
    tetiva2 V kružnici s priemerom d = 10 cm, je zostrojená tetiva o dĺžke 6 cm. Aký polomer by mala sústredná kružnica, ktorá by sa tejto tetivy dotýkala?
  • Rybník
    rybnik_3 Rybník vidíme pod zorným uhlom 65° 37 '. Jeho okraje sú vzdialené 155 m a 177 m od pozorovateľa. Aká je šírka rybníka?
  • Vnútorné uhly trojuholníka
    triangle_1111 Vnútorné uhly trojuholníka majú veľkosti 30°, 45°, 105°, jeho najdlhšia strana meria 10cm. Vypočítajte dĺžku najkratšej strany, výsledok uveďte v cm s presnosťou na dve desatinné čísla.
  • Tetiva
    circleChord Akú dĺžku x má tetiva kružnice s priemerom 60 m, ak je vzdialená od stredu kružnice 10 m?
  • Trojuholník - opísaná
    Opísaná_kružnica Vypočítaj dĺžky strán trojuholníka ABC, v ktorom α = 113°, β = 48° a polomer kružnice trojuholníku opísanej je r = 10 cm.
  • Dve loďky
    ship_1 Dve loďky sú zamerané z výšky 150m nad hladinou jazera pod hĺbkovými uhlami 57° a 39°. Vypočítajte vzdialenosť oboch lodiek, ak zameriavací prístroj a obe loďku sú v rovine kolmej k hladine jazera.
  • V pravouhlom 8
    rt_triangle_1 V pravouhlom trojuholníku ABC s pravým uhlom pri vrchole C poznáme dĺžku strany AB = 24 cm a uhol pri vrchole B = 71°. Vypočítajte dĺžku odvesien trojuholníka.