Polohový vektor

Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom:

r(t) = (6t2+ 4t ; 3t + 1)

kde t je čas v sekundách a súradnice vektora sú v metroch.

Vypočítajte:

a) aká je poloha hmotného bodu v čase t = 2s?
b) veľkosť rýchlosti hmotného bodu v čase t = 3s
c) veľkosť zrýchlenia hmotného bodu v čase t = 5s

Správna odpoveď:

x =  32
y =  7
v =  40,1123 m/s
a =  12 m/s2

Postup správneho riešenia:

t1=2 s r(t)=(6t2+4t;3t+1)  x=6 t12+4 t1=6 22+4 2=32
y=3 t1+1=3 2+1=7
t2=3 s v(t)=r(t)=(12 t+4;3)  v0=12 t2+4=12 3+4=40 v1=3  v=v02+v12=402+32=1609=40.1123 m/s
t3=5 s a(t)=r(t)=(12;0)  a=122+02=12 m/s2



Našiel si chybu či nepresnosť? Kľudne nám ju napíš.



avatar




Tipy na súvisiace online kalkulačky
Dva vektory určené veľkosťami a vzájomným uhlom sčíta naša kalkulačka sčítania vektorov.
Chcete premeniť jednotku dĺžky?
Chcete premeniť jednotku rýchlosti?
Prajete si premeniť jednotku času, napr. hodiny na minúty?
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3   video4

Súvisiace a podobné príklady:

  • Polohový 2
    speed2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (1 + 5t + 2t2 ; 3t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v ča
  • Polohový 3
    vectors2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (t2+ 2t + 1 ; 2t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v čase
  • Vektory 5
    speed2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (2t + 3t2; 6t + 3), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v čase t
  • Vektory
    vectors Vektor a má súradnice (9; -1) a vektor b má súradnice (-13; 6). Ak vektor c= b-a, aká je veľkosť vektora c?
  • Častica
    integral_speed Častica sa pohybuje v priamke tak, že jej rýchlosť (m/s) v čase t sekúnd je daná vzťahom v (t) = 3t2-4t-4, t > 0. Spočiatku je častica 8 metrov vpravo od pevného pôvodu. Po koľkých sekundách je častica na začiatku?
  • Vektor
    some_vector Vypočítajte veľkosť vektora v⃗ = (9,75, 6,75, -6,5, -3,75, 2)
  • 3d vektor komponenta
    vectors Vektor u = (3,9, u3) a veľkosť vektora u = 12. Koľko je u3?
  • Tri body
    abs1 Sú dané tri body v rovine A (-3; -5) B (9; -10) a C (2; k). Dĺžka AB = AC Aká je hodnota k?
  • Na priamke
    linearna Na priamke p: 3 x - 4 y - 3 = 0, stanovte súradnice bodu C, ktorý je rovnako vzdialený od bodov A [4, 4] a B [7, 1].
  • Vektor PQ
    vectors Zo zadaných súradníc bodov P = (5, 8) a Q = (6, 9), nájdite súradnice a veľkosť vektora PQ.
  • Jednotkový 2D
    one Zistite jednotkový vektor (jeho súradnice) k vektoru AB ak A[-6; 8], B[-18; 10].
  • Vektory v priestore 3D
    vectors Dané sú vektory u=(1;3;-4), v=(0;1;1). Určte veľkosť týchto vektorov, vypočitajte uhol vektorov, vzdialenosť medzi vektormi.
  • V rovine
    medians V rovine je daný trojuholník ABC. A(-3,5), B(2,3), C(-1,-2) zapíšte súradnice vektorov u, v, w ak u=AB, v=AC, w=BC. Zapíšte súradnice stredov úsečiek SAB(. .), SAC(. .. ), SBC(. .. )
  • Trojuholník KLM
    triangle_rt_taznice Dané sú body K( -3; 2), L(-1; 4), M(3, -4). Zistite: a) či je trojuholník KLM pravouhlý b) vypočítajte dĺžku ťažnice na stranu k c) napíšte súradnice vektora LM d) napíšte smernicový tvar strany KM e) napíšte smernicový tvar osi strany KM
  • Sú dané
    vectors_sum0 Sú dané vektory a = (4,2), b = (- 2,1). Vypočítajte: a) |a+b|, b) |a|+|b|, c) |a-b|, d) |a|-|b|.
  • Strany a ťažnice
    taznice3 Trojuholník ABC v rovine Oxy; sú dané súradnice bodov: A = 2,7 B = -4,3 C = 6, -1 Skúste vypočítať všetky ťažnice a všetky dĺžky strán.
  • Vzdialenosť
    distance_point_line Vypočítajte vzdialenosť bodu A [0, 2] od priamky prechádzajúcej bodmi B [9, 5] a C [1, -1].